Skip to main content
Log in

Heat conduction mechanism in nanofluids

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Nanofluids are produced by dispersing nanoparticles in basefluid. Given its superior thermo-physical properties, nanofluids are gaining increasing attention and are showing promising potential in various applications. Numerous studies have been conducted in the past decade to experimentally and theoretically investigate thermal conductivity. The experimental finding is briefly summarized in this study; however, we do not intend to present a systematic summary of the available references from the literature. The primary objective of this study is to review and summarize the most debated mechanisms for heat conduction in nanofluids, such as the effects of a nanolayer, the Brownian motion of nanoparticles and aggregation, as well as induced convection. Finally, at a low concentration of nanoparticles, nanoconvection is the leading contributor to thermal conductivity enhancement, whereas at a higher concentration, the natural thermal transport along the backbone would aggregate, and the effects of the nanolayer would become significant and become ineligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, International mechanical engineering congress and exhibition, San Francisco, CA (1995) 12–17.

    Google Scholar 

  2. R. Saidur, K. Y. Leong and H. A. Mohammad, A review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews, 15 (3) (2011) 1646–1668.

    Article  Google Scholar 

  3. S. Choi, Nanofluids could make cool work of hot truck engines, http://nano.anl.gov/news/highlights/2005_choi.html, February 11 (2005).

    Google Scholar 

  4. R. Zheng, J. Gao, J. Wang and G. Chen, Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions, Nature communications, 2 (2011) 289.

    Article  Google Scholar 

  5. R. Zheng, J. Gao, J. Wang, S. P. Feng, H. Ohtani, J. Wang and G. Chen, Thermal percolation in stable graphite suspensions, Nano letters, 12 (1) (2012) 188–192.

    Article  Google Scholar 

  6. J. J. Wang, R. T. Zheng, J. W. Gao and G. Chen, Heat conduction mechanisms in nanofluids and suspensions, Nano Today, 7 (2) (2012) 124–136.

    Article  Google Scholar 

  7. S. U. S. Choi, Z. G. Zhang, W. Yu and F. E. Lockwood, E. A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters, 79 (14) (2001) 2252.

    Article  Google Scholar 

  8. P. Keblinski, J. A. Eastman and D. G. Cahill, Nanofluids for thermal transport, Materials Today (36-44) (June 2005).

    Google Scholar 

  9. R. S. Vajjha and D. K. Das, A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power, International Journal of Heat and Mass Transfer, 55 (15–16) (2012) 4063–4078.

    Article  Google Scholar 

  10. W. Yu, D. M. France, J. L. Routbort and S. U. S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Engineering, 29 (5) (2008) 432–460.

    Article  Google Scholar 

  11. X.-Q. Wang and A. S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences, 46 (1) (2007) 1–19.

    Article  MATH  Google Scholar 

  12. M. Chandrasekar and S. Suresh, A review on the mechanisms of heat transport in nanofluids, Heat Transfer Engineering, 30 (14) (2009) 1136–1150.

    Article  Google Scholar 

  13. S. Krishnamurthy, P. Bhattacharya and P. E. Phelan, Enhanced mass transport in nanofluids, Nano Letters, 6 (3) (2006) 419–423.

    Article  Google Scholar 

  14. J.-K. Kim, J. Y. Jung and Y. T. Kang, Absorption performance enhancement by nanoparticles and chemical surfactants in binary nanofluids, International Journal of Refrigeration, 30 (1) (2007) 50–57.

    Article  Google Scholar 

  15. Y. T. Kang, H. J. Kim and K. I. Lee, Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process, International Journal of Refrigeration, 31 (5) (2008) 850–856.

    Article  Google Scholar 

  16. I. Torres Pineda, J. W. Lee, I. Jung and Y. T. Kang, CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber, International Journal of Refrigeration, 35 (5) (2012) 1402–1409.

    Article  Google Scholar 

  17. J. W. Lee, J.-Y. Jung, S.-G. Lee and Y. T. Kang, CO2 bubble absorption enhancement in methanol-based nanofluids, International Journal of Refrigeration, 34 (8) (2011) 1727–1733.

    Article  Google Scholar 

  18. C. Pang, W. Wu, W. Sheng, H. Zhang and Y. T. Kang, Mass transfer enhancement by binary nanofluids (NH3/H2O + Ag nanoparticles) for bubble absorption process, International Journal of Refrigeration, 35 (8) (2012) 2240–2247.

    Article  Google Scholar 

  19. S. Özerinç, S. Kakaç and A. G. Yazicioglu, Enhanced thermal conductivity of nanofluids: a state-of-the-art review, Microfluidics and Nanofluidics, 8 (2) (2009) 145–170.

    Article  Google Scholar 

  20. J. H. Lee, S. H. Lee, C. J. Choi, S. P. Jang and S. U. S. Choi, A review of thermal conductivity data, mechanisms and models for nanofluids, International Journal of Micro-Nano Scale Transport, 1 (4) (2010) 269–322.

    Article  Google Scholar 

  21. A. Sergis and Y. Hardalupas, Anomalous heat transfer modes of nanofluids: a review based on statistical analysis, Nanoscale Research Letters, 6 (1) (2011) 391.

    Article  Google Scholar 

  22. R. Saidur, S. N. Kazi, M. S. Hossain, M. M. Rahman and H. A. Mohammed, A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems, Renewable and Sustainable Energy Reviews, 15 (1) (2011) 310–323.

    Article  Google Scholar 

  23. D. P. Kulkarni, R. S. Vajjha, D. K. Das and D. Oliva, Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant, Applied Thermal Engineering, 28 (14–15) (2008) 1774–1781.

    Article  Google Scholar 

  24. X. F. Yang and Z. H. Liu, Application of functionalized nanofluid in thermosyphon, Nanoscale Research Letters, 6 (1) (2011) 494.

    Article  Google Scholar 

  25. T. Parametthanuwat, S. Rittidech, A. Pattiya, Y. Ding and S. Witharana, Application of silver nanofluid containing oleic acid surfactant in a thermosyphon economizer, Nanoscale Research Letters, 6 (1) (2011) 315.

    Article  Google Scholar 

  26. A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nature Materials, 10 (2011) 569–581.

    Article  Google Scholar 

  27. X. Wei, H. Zhu, T. Kong and L. Wang, Synthesis and thermal conductivity of Cu2O nanofluids, International Journal of Heat and Mass Transfer, 52 (2009) 4371–4374.

    Article  Google Scholar 

  28. L. Wang and X. Wei, Nanofluids: Synthesis, heat conduction, and extension, Journal of Heat Transfer, 131 (3) (2009) 033102.

    Article  Google Scholar 

  29. K. Kappagantula and M. L. Pantoya, Experimentally measured thermal transport properties of aluminum-polytetrafluoroethylene nanocomposites with grapheme and carbon nanotube additives, International Journal of Heat and Mass Transfer, 55 (2012) 817–824.

    Article  Google Scholar 

  30. C. Pang, J.-Y. Jung, J. W. Lee and Y. T. Kang, Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles, International Journal of Heat and Mass Transfer, 55 (21–22) (2012) 5597–5602.

    Article  Google Scholar 

  31. C. Pang, J.-Y. Jung and Y. T. Kang, Thermal conductivity enhancement of Al2O3 nanofluids based on the mixtures of aqueous NaCl solution and CH3OH, International Journal of Heat and Mass Transfer, 56 (1–2) (2013) 94–100.

    Article  Google Scholar 

  32. C. Pang and Y. T. Kang, Enhanced thermal conductivity of nanofluids by nanoconvection and percolation network, International Journal of Heat and Mass Transfer (Submitted) (2013).

    Google Scholar 

  33. C. Pang and Y. T. Kang, A critical review on heat and mass transfer characteristics in nanofluids, Renewable & Sustainable Energy Reviews (submitted) (2013).

    Google Scholar 

  34. C. Pang, J.-Y. Jung and Y. T. Kang, Aggregation based model for thermal conductivity enhancement of nanofluids, International Journal of Heat and Mass Transfer, 72 (2014) 392–399.

    Article  Google Scholar 

  35. M. Kostic and K. C. Simham, Computerized, transient hot-wire thermal conductivity (HWTC) apparatus for nanofluids, Proceedings of the 6th WSEAS International Conference on HEAT and MASS TRANSFER (HMT’09) (2009) 71–78.

    Google Scholar 

  36. P. Vadasz, Rendering the transient hot wire experimental method for thermal conductivity estimation to two-phase systems-theoretical leading order results, Journal of Heat Transfer, 132 (8) (2010) 081601.

    Article  Google Scholar 

  37. J. Fan and L. Wang, Review of heat conduction in nanofluids, Journal of Heat Transfer, 133 (4) (2011) 040801.

    Article  Google Scholar 

  38. S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, Journal of Heat Transfer, 121 (2) (1999) 280–289.

    Article  Google Scholar 

  39. S. K. Das, N. Putra, P. Thiesen and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer, 125 (4) (2003) 567.

    Article  Google Scholar 

  40. H. Xie, H. Lee, W. Youn and M. Choi, Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, Journal of Applied Physics, 94 (8) (2003) 4967.

    Article  Google Scholar 

  41. S. M. S. Murshed, K. C. Leong and C. Yang, Enhanced thermal conductivity of TiO2-water based nanofluids, International Journal of Thermal Sciences, 44 (4) (2005) 367–373.

    Article  Google Scholar 

  42. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters, 78 (6) (2001) 718.

    Article  Google Scholar 

  43. M. S. Liu, M. C. Lin, I. T. Huang and C. C. Wang, Enhancement of thermal conductivity with carbon nanotube for nanofluids, International Communications in Heat and Mass Transfer, 32 (9) (2005) 1202–1210.

    Article  Google Scholar 

  44. H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai and Q. Wu, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, Journal of Applied Physics, 91 (7) (2002) 4568.

    Article  Google Scholar 

  45. H. U. Kang, S. H. Kim and J. M. Oh, Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Experimental Heat Transfer, 19 (3) (2006) 181–191.

    Article  Google Scholar 

  46. M. Chiesa and S. K. Das, Experimental investigation of the dielectric and cooling performance of colloidal suspensions in insulating media, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 335 (1–3) (2009) 88–97.

    Article  Google Scholar 

  47. A. Karaipekli, A. Sari and K. Kaygusuz, Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications, Renewable Energy, 32 (13) (2007) 2201–2210.

    Article  Google Scholar 

  48. W. Yu, H. Xie and D. Bao, Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets, Nanotechnology, 21 (5) (2010) 055705.

    Article  Google Scholar 

  49. H. Xie, W. Yu, Y. Li and L. Chen, Discussion on the thermal conductivity enhancement of nanofluids, Nanoscale Research Letters, 6 (1) (2011) 124.

    Article  Google Scholar 

  50. Y. Xuan, Q. Li and W. Hu, Aggregate structure and thermal conductivity of nanofluids, AICh E Journal, 49 (4) (2003) 1038–1043.

    Article  Google Scholar 

  51. G. N. Dul’nev and Y. P. Zarichnyak, Thermal conductivity of liquid mixtures, Journal of Engineering Physics, 11 (6) (1966) 747–750.

    Google Scholar 

  52. H. xie, J. Wang, T. Xi, Y. Liu and F. Ai, Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid, Journal of Materials Science Letters, 21 (2002) 1469–1471.

    Article  Google Scholar 

  53. H. A. Mintsa, G. Roy, C. T. Nguyen and D. Doucet, New temperature dependent thermal conductivity data for waterbased nanofluids, International Journal of Thermal Sciences, 48 (2) (2009) 363–371.

    Article  Google Scholar 

  54. S. M. S. Murshed, K. C. Leong and C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, International Journal of Thermal Sciences, 47 (5) (2008) 560–568.

    Article  Google Scholar 

  55. C. H. Chon and K. D. Kihm, Thermal conductivity enhancement of nanofluids by brownian motion, Journal of Heat Transfer, 127 (8) (2005).

    Google Scholar 

  56. R. Prasher, P. E. Phelan and P. Bhattacharya, Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (Nanofluid), Nano letters, 6 (7) (2006) 1529–1534.

    Article  Google Scholar 

  57. X. Q. Wang and A. S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences, 46 (1) (2007) 1–19.

    Article  MATH  Google Scholar 

  58. P. Keblinski, R. Prasher and J. Eapen, Thermal conductance of nanofluids: is the controversy over?, Journal of Nanoparticle Research, 10 (7) (2008) 1089–1097.

    Article  Google Scholar 

  59. J. Maxwell, Treatise on Electricity and Magnetism, Dover Publications, New York (1954).

    MATH  Google Scholar 

  60. D. A. G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Annalen der Physik, 416 (7) (1935) 636–664.

    Article  Google Scholar 

  61. B.-X. Wang, L.-P. Zhou and X.-F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, International Journal of Heat and Mass Transfer, 46 (14) (2003) 2665–2672.

    Article  MATH  Google Scholar 

  62. R. L. Hamilton and O. K. Crosser, Thermal conductivity of heterogeneous two-component systems, Industrial and Engineering Chemistry Fundamentals, 1 (3) (1962) 187–191.

    Article  Google Scholar 

  63. P. Keblinski, S. R. Phillpot, S. U. S. Choi and J. A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), International Journal of Heat and Mass Transfer, 45 (2002) 855–863.

    Article  MATH  Google Scholar 

  64. W. Yu and S. U. S. Choi, the role of interfacial layers in the enhanced thermal conductivity of nanofluids-A renovated maxwell model, Journal of Nanoparticle Research, 5 (2003) 167–171.

    Article  Google Scholar 

  65. T. Hashimoto, M. Shibayama and H. Kawai, Domainboundary structure of styrene-isoprene block copolymer films cast from solution 4. Molecular-weight dependence of lamellar microdomains, Macromolecules, 13 (1980) 1237–1247.

    Article  Google Scholar 

  66. W. Yu and S. U. S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton-Crosser model, Journal of Nanoparticle Research, 6 (2004) 355–361.

    Article  Google Scholar 

  67. K. C. Leong, C. Yang and S. M. S. Murshed, A model for the thermal conductivity of nanofluids-the effect of interfacial layer, Journal of Nanoparticle Research, 8 (2) (2006) 245–254.

    Article  Google Scholar 

  68. H. Xie, M. Fujii and X. Zhang, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture, International Journal of Heat and Mass Transfer, 48 (14) (2005) 2926–2932.

    Article  MATH  Google Scholar 

  69. C.-J. Yu, A. G. Richter, A. Datta, M. K. Durbin and P. Dutta, Observation of molecular layering in thin liquid films using X-RAY REflECtivity, Physical Review Letters, 82 (11) (1999) 2326–2329.

    Article  Google Scholar 

  70. S. P. Jang and S. U. S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Applied Physics Letters, 84 (21) (2004) 4316.

    Article  Google Scholar 

  71. J. Koo and C. Kleinstreuer, A new thermal conductivity model for nanofluids, J. Nanopart. Research, 6 (6) (2004) 577–588.

    Article  Google Scholar 

  72. R. Prasher, P. Bhattacharya and P. Phelan, Thermal conductivity of nanoscale colloidal solutions (Nanofluids), Physical Review Letters, 94 (2) (2005).

    Google Scholar 

  73. D. Kumar, H. Patel, V. Kumar, T. Sundararajan, T. Pradeep and S. Das, Model for heat conduction in nanofluids, Physical Review Letters, 93 (14) (2004).

    Google Scholar 

  74. H. E. Patel, T. Sundararajan and S. K. Das, A cell model approach for thermal conductivity of nanofluids, Journal of Nanoparticle Research, 10 (1) (2007) 87–97.

    Article  Google Scholar 

  75. J. Eapen, R. Rusconi, R. Piazza and S. Yip, The classical nature of thermal conduction in nanofluids, Journal of Heat Transfer, 132 (10) (2010) 102402.

    Article  Google Scholar 

  76. Y. Feng, B. Yu, P. Xu and M. Zou, The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles, Journal of Physics D: Applied Physics, 40 (10) (2007) 3164–3171.

    Article  Google Scholar 

  77. B. Yang, Thermal conductivity equations based on brownian motion in suspensions of nanoparticles (Nanofluids), Journal of Heat Transfer, 130 (4) (2008) 042408.

    Article  Google Scholar 

  78. R. Prasher, P. E. Phelan and P. Bhattacharya, Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid), Nano Letters., 6 (7) (2006) 1529–1534.

    Article  Google Scholar 

  79. J. W. Gao, R. T. Zheng, H. Ohtani, D. S. Zhu and G. Chen, Experimental investigation of heat conduction mechanisms in nanofluids-clue on clustering, Nano letters, 9 (12) (2009) 4128–4132.

    Article  Google Scholar 

  80. W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan and P. Keblinski, Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids, International Journal of Heat and Mass Transfer, 51 (5–6) (2008) 1431–1438.

    Article  MATH  Google Scholar 

  81. C.-W. Nan, R. Birringer, D. R. Clarke and H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance, Journal of Applied Physics, 81 (10) (1997) 6692.

    Article  Google Scholar 

  82. R. Prasher, P. Bhattacharya and P. E. Phelan, Brownianmotion-based convective-conductive model for the effective thermal conductivity of nanofluids, Journal of Heat Transfer, 128 (6) (2006) 588.

    Article  Google Scholar 

  83. G. Chen, Nanoscale energy transport and conversion: A parallel treatment of electrons, molecules, phonons, and photons, Oxford University Press, USA, March 3 (2005).

    Google Scholar 

  84. O. Wilson, X. Hu, D. Cahill and P. Braun, Colloidal metal particles as probes of nanoscale thermal transport in fluids, Physical Review B, 66 (22) (2002).

    Google Scholar 

  85. A. G. Every, Y. Tzou, D. P. H. Hasselman and R. Raj, The Effect of microstructure on the thermal conductivity of particulate ZnS-diamond composites, Journal of Materials Research (1990).

    Google Scholar 

  86. R. Prasher, Acoustic mismatch model for thermal contact resistance of van der Waals contacts, Applied Physics Letters, 94 (4) (2009) 041905.

    Article  Google Scholar 

  87. X. Wang, X. Xu and S. U. S. Choi, Thermal conductivity of nanoparticle-fluid mixture, Journal of Thermophysics and Heat Transfer, 13 (4) (1999) 474–480.

    Article  Google Scholar 

  88. P. D. Shima, J. Philip and B. Raj, Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids, Applied Physics Letters, 94 (22) (2009) 223101.

    Article  Google Scholar 

  89. W. Evans, J. Fish and P. Keblinski, Role of Brownian motion hydrodynamics on nanofluid thermal conductivity, Applied Physics Letters, 88 (9) (2006) 093116.

    Article  Google Scholar 

  90. G. Domingues, S. Volz, K. Joulain and J.-J. Greffet, Heat transfer between two nanoparticles through near field interaction, Physical Review Letters, 94 (8) (2005).

    Google Scholar 

  91. P. Ben-Abdallah, Heat transfer through near-field interactions in nanofluids, Applied Physics Letters, 89 (11) (2006) 113117.

    Article  Google Scholar 

  92. S. Shen, A. Narayanaswamy and G. Chen, Surface phonon polaritons mediated energy transfer between nanoscale gaps, Nano letters, 9 (8) (2009) 2909–2913.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Tae Kang.

Additional information

Recommended by Editor Haecheon Choi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, C., Lee, J.W., Hong, H. et al. Heat conduction mechanism in nanofluids. J Mech Sci Technol 28, 2925–2936 (2014). https://doi.org/10.1007/s12206-014-0645-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0645-x

Keywords

Navigation