Skip to main content
Log in

A cell model approach for thermal conductivity of nanofluids

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This work presents a cell model for predicting the thermal conductivity of nanofluids. Effects due to the high specific surface area of the mono-dispersed nanoparticles and the micro-convective heat transfer enhancement associated with the Brownian motion of particles are addressed in detail. Novelty of the paper lies in its prediction of the non-linear dependence of thermal conductivity of nanofluids on particle volume fraction at low particle concentrations. The model is found to correctly predict the trends observed in experimental data over a wide range of particle sizes, temperatures and particle concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A m :

Heat transfer area per particle for conduction through liquid medium (m2)

A pc :

Volume averaged cross-sectional area for conduction through nanoparticle (m2)

A ps :

Surface area of nanoparticle (m2)

c :

Empirical constant

d p :

Average particle diameter (m)

dT/dx :

Temperature gradient (K/m)

h :

Convective heat transfer coefficient (W/m2 K)

k b :

Boltzmann constant (J/K)

k m :

Thermal conductivity of liquid medium (W/m K)

k p :

Thermal conductivity of particle (W/m K)

l :

Length scale of the unit cell (m)

Nu :

Nusselt number

n :

Number of nanoparticles per unit volume of nanofluid

Pe :

Peclet number

q m :

Heat flux in liquid medium by conduction (W/m2)

q nf :

Overall heat flux in nanofluid (W/m2)

R c :

Thermal resistance of micro-convection (K/W)

R eff :

Effective thermal resistance of the nanofluid system (K/W)

R m :

Thermal resistance of conduction in liquid medium (K/W)

R p :

Thermal resistance of a particle (K/W)

T :

Temperature (K)

u p :

Particle velocity due to Brownian motion (m/s)

eff:

Effective

m:

Liquid medium

nf:

Nanofluid

p:

Particle

α:

Thermal diffusivity (m2/s)

ɛ:

Particle volume fraction

η:

Dynamic viscosity (N s/m2)

References

  • Chon CH, Kihm KD (2005) Thermal conductivity enhancement of nanofluids by Brownian motion. Trans ASME, J Heat Transf 127:810

    Article  Google Scholar 

  • Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Trans 125:567–574

    Article  CAS  Google Scholar 

  • Das SK, Choi SUS, Patel HE (2006) Heat transfer in nanofluids review. Heat Transf Eng 27(10):3–19

    Article  CAS  Google Scholar 

  • Eastman JA, Choi SUS, Li S, Yu W, Thomson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720

    Article  CAS  Google Scholar 

  • Einstein A (1956) Investigations on the theory of the Brownian movement. Dover, New York

    Google Scholar 

  • Gao L, Zhou XF (2006) Differential effective medium theory for thermal conductivity in nanofluids. Phys Lett A 348:355–360

    Article  CAS  Google Scholar 

  • Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. I & EC Fundam 1:187–191

    Article  CAS  Google Scholar 

  • Hemanth KD, Patel HE, Rajeev KVR, Sundararajan T, Pradeep T, Das SK (2004) Model for heat conduction in nanofluids. Phys Rev Lett 93:144301-1–144301-4

    Google Scholar 

  • Hong TK, Yang HS, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97:064311-1–064311-4

    Google Scholar 

  • Jaiswal AK, Sundararajan T, Chhabra RP (1991) Hydrodynamics of Newtonian fluid flow through assemblages of rigid spherical particles in intermediate Reynolds number regime. Int J Eng Sci 29(6):693–708

    Article  CAS  Google Scholar 

  • Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318

    Article  CAS  Google Scholar 

  • Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (Nanofluids). Int J Heat Mass Trans 45:855–863

    Article  CAS  Google Scholar 

  • Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Trans 121:280–289

    CAS  Google Scholar 

  • Lee D, Kim JW, Kim BG (2006) A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J Phys Chem B 110:4323–4328

    Article  CAS  Google Scholar 

  • Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99:084314/1–084314/8

    CAS  Google Scholar 

  • Maxwell JC (1881) A Treatise on electricity and magnetism, 2nd edn., vol 1. Clarendon Press, Oxford, UK

    Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44:367–373

    Article  CAS  Google Scholar 

  • Prasher R, Evans W, Meakin P, Fish J, Phelan P, Keblinski P (2006) Effect of aggregation on thermal conduction in colloidal nanofluids. Appl Phys Lett 89:143119

    Article  CAS  Google Scholar 

  • Sanyal D, Sundararajan T (1992) An analytical model of spray combustion for slowly moving fuel drops. Int J Heat Mass Transf 35(5):1035–1048

    Article  CAS  Google Scholar 

  • Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophysics Heat Transf 13:474–480

    Article  CAS  Google Scholar 

  • Wang B, Zhou L, Peng X (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672

    Article  CAS  Google Scholar 

  • White FM (1991) Viscous fluid flow. McGraw-Hill, New York

    Google Scholar 

  • Xuan Y, Li Q (2000) Heat transfer enhancement of nano-fluids. Int J Heat Fluid Flow 21:58–64

    Article  CAS  Google Scholar 

  • Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49:1038–1043

    Article  CAS  Google Scholar 

  • Xue QZ (2003) Model for effective thermal conductivity of nanofluids. Phys Lett A 307:313–317

    Article  CAS  Google Scholar 

  • Yang B, Han ZH (2006) Temperature-dependent thermal conductivity of nanorods-based nanofluids. Appl Phys Lett 89:083111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Defence Research and Development Organisation (DRDO) and Department of Science and Technology (DST), Government of India, for the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarit Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, H.E., Sundararajan, T. & Das, S.K. A cell model approach for thermal conductivity of nanofluids. J Nanopart Res 10, 87–97 (2008). https://doi.org/10.1007/s11051-007-9236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9236-4

Keywords

Navigation