Skip to main content
Log in

A short summary on finite element modelling of fatigue crack closure

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents a short summary pertaining to the finite element modelling of fatigue crack closure. Several key issues related to finite element modelling of fatigue crack closure are highlighted: element type, mesh refinement, stabilization of crack closure, crack-tip node release scheme, constitutive model, specimen geometry, stress-states (i.e., plane stress, plane strain), crack closure monitoring. Reviews are presented for both straight and deflected cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Miyamoto, T. Miyoshi and S. Fukuda, An analysis of crack propagation in welded structures, Significance of Defects in Welded Structures, Proceedings of Japan-U.S. Seminar, Tokyo Press (1973) 189–202.

  2. H. Miyamoto, The mechanics of crack propagation, Proceedings of symposium on mechanical behaviour of materials, Kyoto (1974) 37–47.

  3. K. Ohji, K. Ogura and Y. Ohkubo, On the closure of fatigue cracks under cyclic tensile loading, International Journal of Fracture, 10 (1974) 123–124.

    Article  Google Scholar 

  4. W. Elber, The significance of fatigue crack closure, In Damage Tolerance in Aircraft Structures, ASTM STP 486 (1971) 230–242.

  5. J. C. Newman and H. Armen, Elastic-plastic analysis of a propagating crack under cyclic loading, AIAA Journal, 13 (1975) 1017–1023.

    Article  MATH  Google Scholar 

  6. M. Katcher, Crack growth retardation under aircraft spectrum loads, Engineering Fracture Mechanics, 5 (1973) 793–818.

    Article  Google Scholar 

  7. W. T. Mathews, F. I. Baratta and G. W. Driscoll, Experimental observation of a stress intensity history effect upon fatigue crack growth rate, International Journal of Fracture, 7 (1971) 224–228.

    Google Scholar 

  8. K. Ohji, K. Ogura and Y. Ohkubo, Cyclic analysis of a propagating crack and its correlation with fatigue crack growth, Engineering Fracture Mechanics, 7 (1975) 457–464.

    Article  Google Scholar 

  9. J. C. Newman, A finite element analysis of fatigue crack closure, Mechanics of Crack Growth, ASTM STP 590 (1976) 281–301.

  10. J. C. Newman, Finite element analysis of crack growth under monotonic and cyclic loading, Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth, ASTM STP 637 (1977) 56–80.

  11. K. Ogura, K. Ohji and K. Honda, Influence of mechanical factors on the fatigue crack closure, Fracture 1977 (Editor: D.M.R. Taplin), 2 (1977a) 1035–1047. New York: Pergamon Press.

    Google Scholar 

  12. K. Ogura and K. Ohji, FEM analysis of crack closure and delay effect in fatigue crack growth in variable amplitude loading, Engineering Fracture Mechanics, 9 (1977b) 471–480.

    Article  Google Scholar 

  13. M. Nakagaki and S. N. Atluri, Fatigue crack closure and delay effects under mode I spectrum loading: an efficient elastic-plastic procedure, Fatigue Engineering Material Structure, 1 (1979) 421–429.

    Article  Google Scholar 

  14. M. Nakagaki and S. N. Atluri, Elasto-plastic analysis of fatigue crack closure in modes I and II. AIAA 18 (1980) 1110–1117.

    Article  Google Scholar 

  15. H. Nakamura, H. Kobayashi, S. Yanase and H. Nakazawa, Finite element analysis of fatigue closure in compact specimen, Mechanical Behaviour of Materials, Proceedings ICM4 2 (1983) 817–823.

    Google Scholar 

  16. A. F. Blom and D. K. Holm, An experimental and numerical study of crack closure, Engineering Fracture Mechanics 22 (1985) 997–1011.

    Article  Google Scholar 

  17. N. A. Fleck, Finite element analysis of plasticity-induced crack closure under plane strain conditions, Engineering Fracture Mechanics, 25 (1986) 441–449.

    Article  Google Scholar 

  18. R. O. Ritchie, W. Yu, A. F. Blom and D. K. Holm, An analysis of crack tip shielding in aluminium alloy 2124: a comparison of large, small, through-thickness and surface fatigue cracks, Fatigue and Fracture of Engineering Materials and Structures, 10 (1987) 343–363.

    Article  Google Scholar 

  19. P. L. Lalor and H. Sehitoglo, Fatigue crack closure outside a small scale yielding regime, Mechanics of Fatigue Crack Closure, ASTM STP 982 (1988) 342–360.

  20. N. A. Fleck and J. C. Newman, Analysis of crack closure under plane strain conditions, Mechanics of Fatigue Crack Closure, ASTM STP 982 (1988) 319–341.

  21. R. G. Chermahini, K. N. Shivakumar and J. C. Newman, Three dimensional elastic-plastic finite element analysis of fatigue crack growth closure, Mechanics of Fatigue Crack Closure, ASTM STP 982 (1988) 398–413.

  22. T. Nicholas, A. Palazotto and E. Bednarz, An analytical investigation of plasticity induced closure involving short cracks, Mechanics of Fatigue Crack Closure, ASTM STP 982 (1988) 361–379.

  23. R. C. McClung and H. Sehitoglu, On the finite element analysis of fatigue crack closure — 1, Basic modelling issues, Engineering Fracture Mechanics, 33(2) (1989) 237–252.

    Article  Google Scholar 

  24. R. C. McClung and H. Sehitoglu, On the finite element analysis of fatigue crack closure — 2, Numerical results, Engineering Fracture Mechanics, 33(2) (1989a) 253–272.

    Article  Google Scholar 

  25. J. Llorca and V. Sanchez-Galvez, Modelling plasticityinduced fatigue crack closure, Engineering Fracture Mechanics, 37 (1990) 185–196.

    Article  Google Scholar 

  26. R. C. McClung, Crack closure and plastic zone sizes in fatigue, Fatigue and Fracture of Engineering Materials and Structures, 14 (1991) 455–468.

    Article  Google Scholar 

  27. R. C. McClung and D. L. Davidson, High resolution numerical and experimental studies of fatigue cracks, Engineering Fracture Mechanics, 39(1) (1991) 113–130.

    Article  Google Scholar 

  28. H. Sehitoglu and W. Sun, Modelling of plane strain fatigue crack closure. Transactions of ASME, Journal of Engineering Materials and Technology, 113 (1991) 31–40.

    Article  Google Scholar 

  29. S. B. Biner, O. Buck and W. A. Spitzig, Plasticity induced crack closure in single and dual phase materials, Engineering Fracture Mechanics, 47 (1994) 1–12.

    Article  Google Scholar 

  30. R. C. McClung, Finite element analysis of specimen geometry effects on fatigue crack closure, Fatigue Fracture Engineering Materials Structures, 17(8) (1994) 861–872.

    Article  Google Scholar 

  31. N. E. Ashbaugh, B. Dattaguru, M. Khobaib, T. Nicholas, R. V. Prakash, T. S. Ramamurthy, B. R. Seshadri and R. Sunder, Experimental and analytical estimates of fatigue crack closure in an aluminium-copper alloy. Part II: A finite element analysis, Fatigue and Fracture of Engineering Materials and Structures, 20 (1997) 963–974.

    Article  Google Scholar 

  32. J. Z. Zhang and P. Bowen, On the finite element simulation of three-dimensional semi-circular fatigue crack growth and closure, Engineering Fracture Mechanics, 60 (1998) 341–360.

    Article  Google Scholar 

  33. L. W. Wei and M. N. James, A study of fatigue crack closure in polycarbonate CT specimens, Engineering Fracture Mechanics, 66 (2000) 223–242.

    Article  Google Scholar 

  34. M. R. Parry, S. Syngellakis and I. Sinclair, Numerical modelling of combined roughness and plasticity induced crack closure in fatigue, Material Science and Engineering A, A291 (2000a) 224–234.

    Article  Google Scholar 

  35. M. R. Parry, S. Syngellakis and I. Sinclair, Numerical, Modelling of roughness and plasticity induced crack closure effects in fatigue, Material Science Forum, 331–337 (2000b) 1473–1478.

    Article  Google Scholar 

  36. M. R. Parry and S. Syngellakis, I. Sinclair Investigation of roughness induced crack closure effects in fatigue, Damage and Fracture Mechanics VI, (Editors: A.P.S Selvadurai, and C.A. Brebbia) (2000c) 313–322, WIT press, Southampton, Boston.

    Google Scholar 

  37. H. Andersson, C. Persson and T. Hansson, Crack growth in IN718 at high temperature, International Journal of Fatigue, 23 (2001) 817–827.

    Article  Google Scholar 

  38. H. Andersson, C. Persson, T. Hansson, S. Melin and N. Jarvstrat, Onstitutive dependence in finite-element modelling of crack closure during fatigue, Fatigue and Fracture of Engineering Materials and Structures, 27 (2004) 75–87.

    Article  Google Scholar 

  39. K. Solanki, S. R. Daniewicz and J. C. Newman, Finite element modelling of plasticity-induced crack closure with emphasis on geometry and mesh refinement effects, Engineering Fracture Mechanics, 70 (2003) 1475–1489.

    Article  Google Scholar 

  40. K. Solanki, S. R. Daniewicz and J. C. Newman, Finite lement analysis of plasticity-induced fatigue crack closure: an overview, Engineering Fracture Mechanics, 71 (2003a) 149–171.

    Article  Google Scholar 

  41. S. Roychowdhury and Jr. R. H. Dodds, A numerical investigation of 3-D small-scale yielding fatigue crack growth, Engineering Fracture Mechanics, 70 (2003) 2363–2383.

    Article  Google Scholar 

  42. S. Roychowdhury and Jr. R. H. Dodds, Three dimensional effects on fatigue crack closure in the small scale-yielding regime, Fatigue and Fracture of Engineering Materials and Structures, 8 (2003a) 663–673.

    Google Scholar 

  43. F. V. Antunes, L. F. P. Borrego, J. D. Costa and J. M. Ferreira, A numerical study of fatigue crack closure induced by plasticity, Fatigue and Fracture of Engineering Materials and Structures, 27 (2004) 825–835.

    Google Scholar 

  44. S. Kibey, H. Sehitoglu and D. A. Peckard, Modeling of fatigue crack closure in inclined and deflected cracks, International Journal of Fracture, 129 (2004) 279–308.

    Article  MATH  Google Scholar 

  45. R. C. McClung, Finite element analysis of fatigue crack closure: a historical and critical review, Proceedings of Seventh International Fatigue Crack Conference, Beijing, China, 1 (1999) 495–502.

    Google Scholar 

  46. K. Ogura, K. Ohji and Y. Ohkubo, Fatigue crack growth under biaxial loading, International Journal of Fracture 10 (1974) 609–610.

    Article  Google Scholar 

  47. D. F. Socie, Prediction of fatigue crack growth in notched members under variable amplitude loading histories, Engineering Fracture Mechanics, 9 (1977) 849–865.

    Article  Google Scholar 

  48. L. Anquez and G. Baudin, Correlation between numerically predicted crack opening load and measured load history dependent crack growth threshold, STM STP 982 (1988) 380–397.

    Google Scholar 

  49. J. C. Nagtegaal, D. M. Parks and J. R. Rice, On numerically accurate finite element solutions in the fully plastic range, Computer Methods in Applied Mechanics and Engineering, 4 (1974) 153–177.

    Article  MATH  MathSciNet  Google Scholar 

  50. P. L. Lalor, H. Sehitoglo and R. C. McClung, Mechanics aspects of small crack growth from notches-the role of crack closure, In The Behaviour of Short Fatigue Cracks, EGF 1, Mechanical engineering publications, London (1986) 369–379.

  51. J. D. Dougherty, J. Padovan and T. S. Srivatsan, Fatigue crack propagation and closure behaviour of modified 1070 steel: finite element study, Engineering Fracture Mechanics, 56 (1997) 189–1997.

    Article  Google Scholar 

  52. M. R. Parry, Finite element and analytical modelling of roughness induced fatigue crack closure, PhD thesis, University of Southampton, Southampton (2000) UK.

    Google Scholar 

  53. N. Kamp, M. R. Parry, K. D. Singh and I. Sinclair, Analytical and finite element modeling of roughness induced crack closure, Acta Materiala, 52 (2004) 343–353.

    Article  Google Scholar 

  54. C. H. Wang, L. R. F. Rose and J. C. Newman, Closure of plane-strain cracks under large-scale yielding conditions, Fatigue and Fracture of Engineering Materials and Structures, 25 (2002) 127–139.

    Article  Google Scholar 

  55. L. G. Zhao, J. Tong and J. Byrne, The evolution of the stress-strain fields near a fatigue crack tip and plasticityinduced crack closure revisited, Fatigue and Fracture of Engineering Materials and Structures, 27 (2004) 19–29.

    Article  Google Scholar 

  56. K. D. Singh, K. H. Khor and I. Sinclair, Roughness and plasticity induced crack closure effects under single overloads: Finite element modelling, Acta Materialia, 54 (2006) 4393–4403.

    Article  Google Scholar 

  57. K. D. Singh, M. R. Parry and I. Sinclair, Some issues on finite element modelling of plasticity induced crack closure due to constant amplitude loading, International Journal of Fatigue, 30 (2008) 1898–1920.

    Article  Google Scholar 

  58. K. D. Singh, M. R. Parry and I. Sinclair, Finite element and analytical modelling of crack closure due to repeated overloads, Acta Materialia, 56 (2008a) 835–851.

    Article  Google Scholar 

  59. Y. Li, J. He, Z. Zhang and L. Wang, Characterizing of crack closure by numerical analysis, Advanced Materials Research, 33–37 (2008) 273–278.

    Article  Google Scholar 

  60. S. Pommeir and P. H. Bompard, Bauschinger effect of alloys and plasticity-induced crack closure: a finite element analysis, Fatigue and Fracture of Engineering Materials and Structures, 23 (2000) 129–139.

    Article  Google Scholar 

  61. S. J. Park, Y. Y. Earmme and J. H. Song, Determination of most appropriate mesh size for a 2-D finite element analysis of fatigue crack closure behaviour, Fatigue and Fracture of Engineering Materials and Structures, 20 (1997) 533–545.

    Article  Google Scholar 

  62. R. S. Blandford, S. R. Daniewicz and J. D. Skinner, Determination of the opening load for a growing fatigue crack: evaluation of experimental data reduction techniques and analytical models, Fatigue and Fracture of Engineering Materiuals and Structures, 25 (2002) 17–26.

    Article  Google Scholar 

  63. D. S. Dawicke, A. F. Grandt and Jr. J. C. Newman, Three dimensional crack closure behaviour, Engineering Fracture Mechanics, 361 (1990a) 111–121.

    Article  Google Scholar 

  64. J. E. Allison, Ku. R. C. Pompetzki, M. A, A comparison of measurement methods and numerical procedures for experimental characterization of fatigue crack closure, ASTM STP 982 (1988) 171–185.

    Google Scholar 

  65. S. K. Ray and A. F. Grandt, Comparison of methods for measuring fatigue crack closure in a thick specimen, In Mechanics of Fatigue Crack Closure, ASTM STP 982 (1988) 197–213.

  66. J. K. Donald, A procedure for standardising crack closure model, ASTM STP 982 (1988) 222–229.

    Google Scholar 

  67. J. Wu and F. Ellyin, A study of fatigue crack closure by elastic-plastic finite element analysis for constant amplitude loading, International Journal of Fracture, 82 (1996) 43–65.

    Article  Google Scholar 

  68. C. M. Ward-Close and R. O. Ritchie, On the role of crack closure mechanisms in influencing fatigue crack growth following tensile overloads in a titanium alloy: Near threshold versus higher ΔK behaviour, Mechanics of Fatigue Crack Closure, ASTM STP 982 (1988) 93–111.

  69. R. C. McClung, The influence of applied stress, crack length, and stress intensity factor on crack closure, Metallurgical Transactions, 22A (1991a) 1559–1571.

    Google Scholar 

  70. S. R. Daniewicz and J. M. Bloom, An assessment of geometry effects on plane stress fatigue crack closure using modified strip-yield model, International Journal of Fatigue, 18 (1996) 483–490.

    Article  Google Scholar 

  71. X. Zhang, A. S. L. Chang and G. A. O. Davies, Numerical simulation of fatigue crack growth under complex loading sequences, Engineering Fracture Mechanics, 42 (1992) 305–321.

    Article  Google Scholar 

  72. O. Nguyen, E. A. Repetto, M. Oritz, R. A. Radovitzky, A cohesive model of fatigue crack growth. International Journal of Fracture, 110 (2001) 351–369.

    Article  Google Scholar 

  73. Roe, K. Siemund, T. Simulation of fatigue crack growth via a fracture process zone model, First MIT Conference on Computational Fluid and Solid Mechanics, MA, USA (2001).

  74. N. Sukumar, D. L. Chopp and B. Moran, Extended finite element method and fast marching method for threedimensional fatigue crack propagation, Fatigue and Fracture of Engineering Materials and Structures, 70 (2003) 29–48.

    Google Scholar 

  75. N. A. Fleck, Plane strain crack closure, PhD thesis, University of Cambridge, England (1984).

    Google Scholar 

  76. N. A. Fleck, Influence of stress state on crack growth retardation, In Basic Questions in Fatigue I, ASTM STP 924 (1988) 157–183.

  77. W. Sun and H. Sehitoglu, Residual stress fields during fatigue crack growth, Fatigue and Fracture of Engineering Materials and Structures 15 (1992) 115–128.

    Article  Google Scholar 

  78. R. C. McClung, B. H. Thacker and S. Roy, Finite element visualisation of fatigue crack closure in plane stress and plane strain, International Journal of Fracture, 50 (1991) 27–49.

    Google Scholar 

  79. S. J. Park and J. H. Song, Simulation of fatigue crack closure behaviour under variable-amplitude loading by a 2D finite element analysis based on the most appropriate mesh size concept, Advances in Fatigue Crack Closure Measurements and Analysis, ASTM STP 1343 (1999) 337–348.

  80. J. C. Newman, Prediction of crack growth under variableaplitude loading in thin-sheet 2024-T3 aluminium alloys, Engineering against fatigue, University of Sheffield (1997) March 1997.

  81. A. Palazotto and E. Bendnarz, A finite element investigation of viscoplastic-induced closure of short cracks at high temperatures, Fracture Mechanics: Perspectives and Directions, ASTM STP 1020 (1989) 530–547.

  82. A. Palazotto and J. C. Mercer, A finite element comparison between short and long within a plastic zone due to notch, Engineering Fracture Mechanics, 35 (1990) 967–986.

    Article  Google Scholar 

  83. R. W. Landgraf, Control of fatigue resistance through microstructure-ferrous alloys. In Fatigue and Microstructure, Proceeding of the 1978 ASM Materials Science Seminar, Ohio: American Society of Metals (1979) 439–466.

  84. W. Elber, Fatigue crack closure under cyclic tension, Engineering Fracture Mechanics, 2 (1970) 37–45.

    Article  Google Scholar 

  85. J. Lankford, D. L. Davidson and K. S. Chan, The influence of crack tip plasticity in the growth of small fatigue cracks, Metallurgical Transactions, 15A (1984) 1579–1588.

    Google Scholar 

  86. F. O. Riemelmoser and R. Pippan, Plasticity induced crack closure under plain strain condition in terms of dislocation arrangement, Proceedings Fatigue’ 96, Edited by G. Lutjering and H. Nowwack (1996) 363–368.

  87. F. O. Riemelmoser and R. Pippan, Discussion of error in the analysis of the wake dislocation problem, Material Transactions A, 29A (1998b) 1357–1359.

    Google Scholar 

  88. F. O. Riemelmoser and R. Pippan, Mechanical reasons for plasticity-induced crack closure under plane strain conditions, Fatigue and Fracture of Engineering Materials and Structures, 21 (1998a) 1425–1433.

    Article  Google Scholar 

  89. B. Budiansky and J. W. Hutchinson, Analysis of closure in fatigue crack growth, Journal of Applied Mechanics, 45 (1978) 267–276.

    Article  MATH  Google Scholar 

  90. H. Fuhring and T. Seeger, Dugdale crack closure analysis of fatigue cracks under constant amplitude loading, Engineering Fracture Mechanics, 11 (1979) 99–122.

    Article  Google Scholar 

  91. K. Minakawa, G. Levan and A. J. McEvily, The influence of load ratio on fatigue crack growth in 7090-T6 and IN9021-T4 P/M aluminium alloys, Metallurgical Transactions, 17A (1986) 1787–1795.

    Google Scholar 

  92. N. Louat, K. Sadananda, M. Duesbury and A. K. Vasudevan, Theoretical evaluation of crack closure, Metallurgical Transactions, 24A (1993) 2225–2232.

    Google Scholar 

  93. N. A. Fleck and R. A. Smith, Crack closure-is it a surface phenomenon?, International Fracture Fatigue, 4 (1982) 157–160.

    Google Scholar 

  94. G. H. Bray, A. P. Reynolds and E. A. Starke, Mechanisms of fatigue crack retardation following single tensile over-loads in powder metallurgy aluminium alloys, Metallurgical Transactions, 23A (1992) 3055–3066.

    Google Scholar 

  95. J. Llorca and V. Sanchez-Galvez, Dynamic analysis of plasticity-induced fatigue crack closure, Advances in Fatigue Science and Technology, Kluwer Academic Press, Denventer (1989) 809–819.

    Google Scholar 

  96. H. Sehitoglu and W. Sun, Modelling of plane strain fatigue crack closure, Transactions of ASME, Journal of Engineering Materials and Technology, 113 (1991) 31–40.

    Article  Google Scholar 

  97. A. F. Blom, Near threshold fatigue crack growth and crack closure in 17-4 PH stell and 2024-T3 aluminium alloy, Fatigue Crack Growth Threshold Concepts, Edited by D.L. Davidson, and S. Suresh, TMS-AMIE, PA. Warrendale, (1984) 263–279.

  98. M. N. James, M. N. Pacey, L. W. Wei and E. A. Patterson, Characterisation of plasticity-induced crack flank contact force versus plastic enclave, Engineering Fracture Mechanics, 70 (2003) 2473–2487.

    Article  Google Scholar 

  99. J. Llorca, Roughness induced fatigue crack closure: a numerical study, Fatigue and Fracture of Engineering Materials and Structures, 15 (1992) 655–669.

    Article  Google Scholar 

  100. S. Suresh and R. O. Ritchie, A geometric model for fatigue crack closure induced by fracture surface morphology, Metallurgical Transactions, 13A (1982a) 1627–1631.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konjengbam Darunkumar Singh.

Additional information

This paper was recommended for publication in revised form by Associate Editor Vikas Tomar

Konjengbam Darunkumar Singh completed a Ph.D at Southampton University in 2005. He joined the Indian Institute of Technology Guwahati in 2006. He is engaged in several research areas of fatigue and fracture mechanics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, K.D., Parry, M.R. & Sinclair, I. A short summary on finite element modelling of fatigue crack closure. J Mech Sci Technol 25, 3015–3024 (2011). https://doi.org/10.1007/s12206-011-0826-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-011-0826-9

Keywords

Navigation