Skip to main content
Log in

Rethinking the Dice Loss for Deep Learning Lesion Segmentation in Medical Images

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Deep learning is widely used for lesion segmentation in medical images due to its breakthrough performance. Loss functions are critical in a deep learning pipeline, and they play important roles in segmenting performance. Dice loss is the most commonly used loss function in medical image segmentation, but it also has some disadvantages. In this paper, we discuss the advantages and disadvantages of the Dice loss function, and group the extensions of the Dice loss according to its improved purpose. The performances of some extensions are compared according to core references. Because different loss functions have different performances in different tasks, automatic loss function selection will be the potential direction in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GARCÉA-LORENZO D, FRANCIS S, NARAYANAN S, et al. Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging [J]. Medical Image Analysis, 2013, 17(1): 1–18.

    Article  Google Scholar 

  2. SARITHA S, PRABHA N A. A comprehensive review: Segmentation of MRI images — brain tumor [J]. International Journal of Imaging Systems and Technology, 2016, 26(4): 295–304.

    Article  Google Scholar 

  3. WADHWA A, BHARDWAJ A, VERMA V S. A review on brain tumor segmentation of MRI images [J]. Magnetic Resonance Imaging, 2019, 61: 247–259.

    Article  Google Scholar 

  4. WEEDA M M, BROUWER I, DE VOS M L, et al. Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation [J]. NeuroImage: Clinical, 2019, 24: 102074.

    Article  Google Scholar 

  5. BERNAL J, KUSHIBAR K, ASFAW D S, et al. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: A review [J]. Artificial Intelligence in Medicine, 2019, 95: 64–81.

    Article  Google Scholar 

  6. KERVADEC H, BOUCHTIBA J, DESROSIERS C, et al. Boundary loss for highly unbalanced segmentation [J]. Medical Image Analysis, 2021, 67: 101851.

    Article  Google Scholar 

  7. CHEN C, QIN C, QIU H Q, et al. Deep learning for cardiac image segmentation: A review [J]. Frontiers in Cardiovascular Medicine, 2020, 7: 25.

    Article  Google Scholar 

  8. ISIN A, DIREKOGLU C, SAH M. Review of MRI-based brain tumor image segmentation using deep learning methods [J]. Procedia Computer Science, 2016, 102: 317–324.

    Article  Google Scholar 

  9. JAAFRA Y, LAURENT J L, DERUYVER A, et al. Reinforcement learning for neural architecture search: Areview [J]. Image and Vision Computing, 2019, 89: 57–66.

    Article  Google Scholar 

  10. MAKROPOULOS A, COUNSELL S J, RUECKERT D. A review on automatic fetal and neonatal brain MRI segmentation [J]. NeuroImage, 2018, 170: 231–248.

    Article  Google Scholar 

  11. SCHMIDHUBER J. Deep learning in neural networks: An overview [J]. Neural Networks, 2015, 61: 85–117.

    Article  Google Scholar 

  12. JADON S. A survey of loss functions for semantic segmentation [EB/OL]. [2020-07-16]. https://arxiv.org/pdf/2006.14822.pdf.

  13. MA J. Segmentation loss odyssey [EB/OL]. [2020-07-16]. https://arxiv.org/pdf/2005.13449.pdf.

  14. MILLETARI F, NAVAB N, AHMADI S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation [C]//2016 Fourth International Conference on 3D Vision (3DV). Stanford, California, USA: IEEE, 2016: 565–571.

    Chapter  Google Scholar 

  15. DROZDZAL M, VORONTSOV E, CHARTRAND G, et al. The importance of skip connections in biomedical image segmentation [M]//CARNEIRO G, MATEUS D, PETER L, et al. Deep learning and data labeling for medical applications. Cham: Springer, 2016: 179–187.

    Chapter  Google Scholar 

  16. FIDON L, LI W Q, GARCIA-PERAZA-HERRERA L C, et al. Generalised wasserstein Dice score for imbalanced multi-class segmentation using holistic convolutional networks [M]//CRIMI A, BAKAS S, KUIJF B, et al. Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham, Switzerland: Springer, 2018: 64–76.

    Chapter  Google Scholar 

  17. REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019: 658–666.

    Chapter  Google Scholar 

  18. DOLZ J, DESROSIERS C, AYED I B. 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study [J]. NeuroImage, 2018, 170: 456–470.

    Article  Google Scholar 

  19. GUIZARDN, COUP? P, FONOV V S, et al. Rotationinvariant multi-contrast non-local means for MS lesion segmentation [J]. NeuroImage: Clinical, 2015, 8: 376–389.

    Article  Google Scholar 

  20. HARMOUCHE R, SUBBANNA N K, COLLINS D L, et al. Probabilistic multiple sclerosis lesion classification based on modeling regional intensity variability and local neighborhood information [J]. IEEE Transactions on Biomedical Engineering, 2015, 62(5): 1281–1292.

    Article  Google Scholar 

  21. STYNER M, LEE J, CHIN B, et al. 3D segmentation in the clinic: A grand challenge II: MS lesion segmentation [J]. MIDAS Journal, 2008, 2008:1–6.

    Google Scholar 

  22. WONG K C L, MORADI M, TANG H, et al. 3D segmentation with exponential logarithmic loss for highly unbalanced object sizes [M]//FRANGI A F, SCHNABEL J A, DAVATZIKOS C, et al. Medical image computing and computer assisted intervention — MICCAI 2018. Cham, Switzerland: Springer, 2018: 612–619.

    Chapter  Google Scholar 

  23. LUCASC, KEMMLINGA, MAMLOUK A M, et al. Multi-scale neural network for automatic segmentation of ischemic strokes on acute perfusion images [C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington, DC, USA: IEEE, 2018: 1118–1121.

    Chapter  Google Scholar 

  24. WANG Z W, SMITH C D, LIU J D. Ensemble of multisized FCNs to improve white matter lesion segmentation [M]//SHI Y H, SUK H I, LIU M X. Machine learning in medical imaging. Cham, Switzerland: Springer, 2018: 223–232.

    Chapter  Google Scholar 

  25. KARIMI D, SALCUDEAN S E. Reducing the hausdorff distance in medical image segmentation with convolutional neural networks [J]. IEEE Transactions on Medical Imaging, 2020, 39(2): 499–513.

    Article  Google Scholar 

  26. YANG D, ROTH H, WANG X S, et al. Enhancing foreground boundaries for medical image segmentation [EB/OL]. [2020-07-16]. https://arxiv.org/pdf/2005.14355.pdf.

  27. ODA H, ROTH H R, CHIBA K, et al. BESNet: Boundary-enhanced segmentation of cells in histopathological images [M]//FRANGI A F, SCHNABEL J A, DAVATZIKOS C, et al. Medical image computing and computer assisted intervention — MICCAI 2018. Cham, Switzerland: Springer, 2018: 228–236.

    Chapter  Google Scholar 

  28. SUDRE C H, LI W Q, VERCAUTEREN T, et al. Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations [M]//CARDOSO M J, ARBEL T, CARNEIRO G, et al. Deep Learning in medical image analysis and multimodal learning for clinical decision support. Cham, Switzerland: Springer, 2017: 240–248.

    Chapter  Google Scholar 

  29. TAGHANAKI S A, ZHENG Y F, ZHOU S K, et al. Combo loss: Handling input and output imbalance in multi-organ segmentation [J]. Computerized Medical Imaging and Graphics, 2019, 75: 24–33.

    Article  Google Scholar 

  30. SALEHI S S M, ERDOGMUS D, GHOLIPOUR A. Tversky loss function for image segmentation using 3D fully convolutional deep networks [M]//WANG Q, SHI Y H, SUK H I, et al. Machine Learning in Medical Imaging. Cham, Switzerland: Springer, 2017: 379–387.

    Chapter  Google Scholar 

  31. RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation [C]//NAVAB N, HORNEGGER J, WELLS W M, et al. Medical image computing and computer-assisted intervention — MICCAI 2015. Cham, Switzerland: Springer, 2015: 234–241.

    Chapter  Google Scholar 

  32. WU Z F, SHEN C H, VAN DEN HENGEL A. Bridging category-level and instance-level semantic image segmentation [EB/OL]. [2020-07-16]. https://arxiv.org/pdf/1605.06885.pdf.

  33. LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 2980–2988.

    Google Scholar 

  34. WANG P, CHUNG A C S. Focal Dice loss and image dilation for brain tumor segmentation [M]//STOYANOV D, TAYLOR Z, CARNEIRO G, et al. Deep learning in medical image analysis and multi-modal learning for clinical decision support. Cham, Switzerland: Springer, 2018: 119–127.

    Chapter  Google Scholar 

  35. ZHOU Y J, HUANG W J, DONG P, et al. D-UNet: A dimension-fusion U shape network for chronic stroke lesion segmentation [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019. https://doi.org/10.1109/TCBB.2019.2939522 (published online).

  36. ASLANI S, MURINO V, DAYAN M, et al. Scanner invariant multiple sclerosis lesion segmentation from MRI [C]//2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). Lowa City, IA, USA: IEEE, 2020: 781–785.

    Chapter  Google Scholar 

  37. HASHEMI S R, SALEHI S S M, ERDOGMUS D, et al. Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: Application to multiple sclerosis lesion detection [J]. IEEE Access, 2019, 7: 1721–1735.

    Article  Google Scholar 

  38. XUE Y Z, FARHAT F G, BOUKRINA O, et al. A multi-path 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images [J]. NeuroImage: Clinical, 2020, 25: 102118.

    Article  Google Scholar 

  39. LI H L, PARIKH N A, WANG J H, et al. Objective and automated detection of diffuse white matter abnormality in preterm infants using deep convolutional neural networks [J]. Frontiers in Neuroscience, 2019, 13: 610.

    Article  Google Scholar 

  40. GROS C, DE LEENER B, BADJI A, et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks [J]. NeuroImage, 2019, 184: 901–915.

    Article  Google Scholar 

  41. RACHMADI M F, VALDES-HERNANDEZ M D C, AGAN M L F, et al. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology [J]. Computerized Medical Imaging and Graphics, 2018, 66: 28–43.

    Article  Google Scholar 

  42. NAIR T, PRECUP D, ARNOLD D L, et al. Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation [J]. Medical Image Analysis, 2020, 59: 101557.

    Article  Google Scholar 

  43. XU B T, CHAI Y Q, GALARZA C M, et al. Orchestral fully convolutional networks for small lesion segmentation in brain MRI [C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington, DC, USA: IEEE, 2018: 889–892.

    Chapter  Google Scholar 

  44. NACEUR M B, AKIL M, SAOULI R, et al. Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy [J]. Medical Image Analysis, 2020, 63: 101692.

    Article  Google Scholar 

  45. KUZINA A, EGOROV E, BURNAEV E. Bayesian generative models for knowledge transfer in MRI semantic segmentation problems [J]. Frontiers in Neuroscience, 2019, 13: 844.

    Article  Google Scholar 

  46. GHAFFARI M, SOWMYA A, OLIVER R. Automated brain tumor segmentation using multimodal brain scans: A survey based on models submitted to the BraTS 2012–2018 Challenges [J]. IEEE Reviews in Biomedical Engineering, 2020, 13: 156–168.

    Article  Google Scholar 

  47. KUMAR A, UPADHYAY N, GHOSAL P, et al. CSNet: A new DeepNet framework for ischemic stroke lesion segmentation [J]. Computer Methods and Programs in Biomedicine, 2020, 193: 105524.

    Article  Google Scholar 

  48. WANG G T, SONG T, DONG Q, et al. Automaticischemic stroke lesion segmentation from computed tomography perfusion images by image synthesis and attention-based deep neural networks [J]. Medical Image Analysis, 2020, 65: 101787.

    Article  Google Scholar 

  49. HU S Y, WENG W H, LU S L, et al. Multimodal volume-aware detection and segmentation for brain metastases radiosurgery [M]//NGUYEN D, XING L, JIANG S. Artificial Intelligence in Radiation Therapy. Cham, Switzerland: Springer, 2019: 61–69.

    Chapter  Google Scholar 

  50. MAIER O, MENZE B H, VON DER GABLENTZ J, et al. ISLES 2015: A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI [J]. Medical Image Analysis, 2017, 35: 250–269.

    Article  Google Scholar 

  51. CICEK O, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: Learning dense volumetric segmentation from sparse annotation [M]//OURSELIN S, JOSKOWICZ L, SABUNCU M R, et al. Medical image computing and computer-assisted intervention — MICCAI 2016. Cham, Switzerland: Springer, 2016: 424–432.

    Chapter  Google Scholar 

  52. MYRONENKO A. 3D MRI brain tumor segmentation using autoencoder regularization [M]//CRIMI A, BAKAS S, KUIJF H, et al. Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham, Switzerland: Springer, 2018: 311–320.

    Google Scholar 

  53. MOSTAPHA M, STYNER M. Role of deep learning in infant brain MRI analysis [J]. Magnetic Resonance Imaging, 2019, 64: 171–189.

    Article  Google Scholar 

  54. WARING J, LINDVALL C, UMETON R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare [J]. Artificial Intelligence in Medicine, 2020, 104: 101822.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyu Wang  (王建宇).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, S., Li, C. et al. Rethinking the Dice Loss for Deep Learning Lesion Segmentation in Medical Images. J. Shanghai Jiaotong Univ. (Sci.) 26, 93–102 (2021). https://doi.org/10.1007/s12204-021-2264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-021-2264-x

Key words

CLC number

Document code

Navigation