Skip to main content

Addressing the Class Imbalance Problem in Medical Image Segmentation via Accelerated Tversky Loss Function

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12714))

Included in the following conference series:

Abstract

Image segmentation in the medical domain has gained a lot of research interest in recent years with the advancements in deep learning algorithms and related technologies. Medical image datasets are often imbalanced and to handle the imbalance problem, deep learning models are equipped with modified loss functions to effectively penalize the training weights for false predictions and conduct unbiased learning. Recent works have introduced various loss functions suitable for certain scenarios of segmentation. In this paper, we have explored the existing loss functions that are widely used for medical image segmentation, following which an accelerated Tversky loss (ATL) function is proposed that uses log cosh function to better optimize the gradients. The no-new U-Net (nn-Unet) model is adopted as the base model to validate the behaviour of the loss functions by using the standard benchmark segmentation performance metrics. To establish the robustness and effectiveness of the loss functions, multiple datasets are adopted, where ATL function illustrated better performance with faster convergence and better mask generation.

All authors have contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Machine Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 3–11. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_1

    Chapter  Google Scholar 

  3. Caliva, F., Iriondo, C., Martinez, A.M., Majumdar, S., Pedoia, V.: Distance map loss penalty term for semantic segmentation. arXiv preprint arXiv:1908.03679 (2019)

  4. Zhang, Z., Wu, C., Coleman, S., Kerr, D.: Dense-inception U-Net for medical image segmentation. Comput. Methods Programs Biomed. 192, 105395 (2020). ISSN 0169-2607

    Article  Google Scholar 

  5. Esteva, A., et al.: A guide to deep learning in healthcare. Nature Med. 25(1), 24–29 (2019)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp, 770–778 (2016)

    Google Scholar 

  7. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2018)

    Google Scholar 

  8. Isensee, F., et al.: Automated design of deep learning methods for biomedical image segmentation (2020). arXiv: 1904.08128 [cs.CV]

  9. Jadon, S.: A survey of loss functions for semantic segmentation. arXiv preprint arXiv:2006.14822 (2020)

  10. Jain, A., Ratnoo, S., Kumar., D.: Addressing class imbalance problem in medical diagnosis: a genetic algorithm approach. In: International Conference on Information, Communication, Instrumentation and Control, pp. 1–8 (2017)

    Google Scholar 

  11. Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ben Ayed, I.: Boundary loss for highly unbalanced segmentation. Medical Image Anal. 67, 101851 (2021). ISSN 1361–8415

    Article  Google Scholar 

  12. Lei, T., Wang, R., Wan, Y., Du, X., Meng, H., Nandi, A.K.: Medical image segmentation using deep learning: a survey. arXiv preprint arXiv:2009.13120 (2020)

  13. Lin, T., et al.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision, pp. 2999–3007 (2017)

    Google Scholar 

  14. Sankaran, P., et al.: Multi-task learning and weighted cross-entropy for DNN-based keyword spotting. In: Interspeech, vol. 9, pp. 760–764 (2016)

    Google Scholar 

  15. Punn, N.S., Agarwal, S.: Inception u-net architecture for semantic segmentation to identify nuclei in microscopy cell images. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 16(1), 1–15 (2020)

    Article  Google Scholar 

  16. Punn, N.S., Agarwal. S.: Multi-modality encoded fusion with 3d inception U-Net and decoder model for brain tumor segmentation. In: Multimedia Tools and Applications, pp. 1–16 (2020)

    Google Scholar 

  17. Rahman, M.A., Wang, Y.: Optimizing intersection-over-union in deep neural networks for image segmentation. In: ISVC (2016)

    Google Scholar 

  18. Ribera, J., Güera, D., Chen, Y., Delp, E.: Weighted hausdorff distance: a loss function for object localization. ArXiv, abs/1806.07564 (2018)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms (2019). arXiv: 1902.09063 [cs.CV]

  21. Suzuki, K.: Overview of deep learning in medical imaging. Radiol. Phys. Technol. 10(3), 257–273 (2017)

    Article  Google Scholar 

  22. Szegedy C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  23. Taghanaki, S.A., et al.: Combo loss: Handling input and output imbalance in multi-organ segmentation (2018). arXiv: 1805.02798 [cs.CV]

  24. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Medical Image Anal. 63, 101693 (2020)

    Google Scholar 

  25. Wong, K.C.L., Moradi, M., Tang, H., Syeda-Mahmood, T.: 3D segmentation with exponential logarithmic loss for highly unbalanced object sizes. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) 3d segmentation with exponential logarithmic loss for highly unbalanced object sizes. LNCS, vol. 11072, pp. 612–619. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_70

    Chapter  Google Scholar 

  26. Wu, Z., Shen, C., van den Hengel, A.: Bridging category-level and instance-level semantic image segmentation (2016). arXiv: 1605.06885 [cs.CV]

  27. Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural. Inf. Process. Syst. 31, 8778–8788 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Nasalwai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nasalwai, N., Punn, N.S., Sonbhadra, S.K., Agarwal, S. (2021). Addressing the Class Imbalance Problem in Medical Image Segmentation via Accelerated Tversky Loss Function. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12714. Springer, Cham. https://doi.org/10.1007/978-3-030-75768-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75768-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75767-0

  • Online ISBN: 978-3-030-75768-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics