Skip to main content

The Importance of Skip Connections in Biomedical Image Segmentation

  • Conference paper
  • First Online:
Deep Learning and Data Labeling for Medical Applications (DLMIA 2016, LABELS 2016)

Abstract

In this paper, we study the influence of both long and short skip connections on Fully Convolutional Networks (FCN) for biomedical image segmentation. In standard FCNs, only long skip connections are used to skip features from the contracting path to the expanding path in order to recover spatial information lost during downsampling. We extend FCNs by adding short skip connections, that are similar to the ones introduced in residual networks, in order to build very deep FCNs (of hundreds of layers). A review of the gradient flow confirms that for a very deep FCN it is beneficial to have both long and short skip connections. Finally, we show that a very deep FCN can achieve near-to-state-of-the-art results on the EM dataset without any further post-processing.

M. Drozdzal and E. Vorontsov—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Rfou, R., Alain, G., Almahairi, A., et al.: Theano: a python framework for fast computation of mathematical expressions. CoRR abs/1605.02688 (2016)

    Google Scholar 

  2. Arganda-Carreras, I., Turaga, S.C., Berger, D.R., et al.: Crowdsourcing the creation of image segmentation algorithms for connectomics. Front. Neuroanat. 9, 142 (2015). doi:10.3389/fnana.2015.00142

    Article  Google Scholar 

  3. Brosch, T., Tang, L.Y.W., Yoo, Y., et al.: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE TMI 35(5), 1229–1239 (2016)

    Google Scholar 

  4. Chen, H., Qi, X., Cheng, J., Heng, P.A.: Deep contextual networks for neuronal structure segmentation. In: Proceedings of the 13th AAAI Conference on Artificial Intelligence, 12–17 February 2016, Phoenix, Arizona, USA, pp. 1167–1173 (2016)

    Google Scholar 

  5. Chollet, F.: Keras (2015). https://github.com/fchollet/keras

  6. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: NIPS, vol. 25, pp. 2843–2851. Curran Associates, Inc. (2012)

    Google Scholar 

  7. Havaei, M., Davy, A., Warde-Farley, D., et al.: Brain tumor segmentation with deep neural networks. CoRR abs/1505.03540 (2015)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. CoRR abs/1603.05027 (2016)

    Google Scholar 

  10. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. CoRR abs/1511.02680 (2015)

    Google Scholar 

  11. Liu, T., Jones, C., Seyedhosseini, M., Tasdizen, T.: A modular hierarchical approach to 3D electron microscopy image segmentation. J. Neurosci. Methods 226, 88–102 (2014)

    Article  Google Scholar 

  12. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, November 2015 (to appear)

    Google Scholar 

  13. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). doi:10.1109/TMI.2014.2377694

    Article  Google Scholar 

  14. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: hints for thin deep nets. CoRR abs/1412.6550 (2014)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015)

    Google Scholar 

  16. Saxe, A., Koh, P.W., Chen, Z., Bhand, M., Suresh, B., Ng, A.Y.: On random weights and unsupervised feature learning. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 1089–1096. ACM, New York (2011)

    Google Scholar 

  17. Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation. CoRR abs/1506.07452 (2015)

    Google Scholar 

  18. Styner, M., Lee, J., Chin, B., et al.: 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation, November 2008

    Google Scholar 

  19. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning. CoRR abs/1602.07261 (2016)

    Google Scholar 

  20. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. CoRR abs/1409.4842 (2014)

    Google Scholar 

  21. Tieleman, T., Hinton, G.: Lecture 6.5—RmsProp: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. (2012)

    Google Scholar 

  22. Uzunbaş, M.G., Chen, C., Metaxsas, D.: Optree: a learning-based adaptive watershed algorithm for neuron segmentation. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 97–105. Springer International Publishing, Cham (2014)

    Google Scholar 

  23. Wu, X.: An iterative convolutional neural network algorithm improves electron microscopy image segmentation. CoRR abs/1506.05849 (2015)

    Google Scholar 

Download references

Acknowledgements

We would like to thank all the developers of Theano and Keras for providing such powerful frameworks. We gratefully acknowledge NVIDIA for GPU donation to our lab at École Polytechnique. The authors would like to thank Lisa di Jorio, Adriana Romero and Nicolas Chapados for insightful discussions. This work was partially funded by Imagia Inc., MITACS (grant number IT05356) and MEDTEQ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michal Drozdzal or Eugene Vorontsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C. (2016). The Importance of Skip Connections in Biomedical Image Segmentation. In: Carneiro, G., et al. Deep Learning and Data Labeling for Medical Applications. DLMIA LABELS 2016 2016. Lecture Notes in Computer Science(), vol 10008. Springer, Cham. https://doi.org/10.1007/978-3-319-46976-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46976-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46975-1

  • Online ISBN: 978-3-319-46976-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics