Skip to main content
Log in

In Vitro Microvessel Growth and Remodeling within a Three-Dimensional Microfluidic Environment

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

This paper presents in vitro microvascular network formation within 3D gel scaffolds made from different concentrations of type-I collagen, fibrin, or a mixture of collagen and fibrin, using a simple microfluidic platform. Initially, microvascular network formation of human umbilical vein endothelial cells was examined using live time-lapse confocal microscopy every 90 min from 3 h to 12 h after seeding within three different concentrations of collagen gel scaffolds. Among the three collagen gel concentrations, the number of skeletons was consistently the highest at 3.0 mg/mL, followed by those of collagen gel scaffolds at 2.5 mg/mL and 2.0 mg/mL. Results demonstrated that concentration of collagen gel scaffolds, which influences matrix stiffness and ligand density, may affect microvascular network formation during the early stages of vasculogenesis. In addition, the maturation of microvascular networks in monoculture under different gel compositions within gel scaffolds (2.5 mg/mL) was examined for 7 days using live confocal microscopy. It was confirmed that pure fibrin gel scaffolds are preferable to collagen gel or collagen/fibrin combinations, significantly reducing matrix retractions during maturation of microvascular networks for 7 days. Finally, early steps in the maturation process of microvascular networks for 14 days were characterized by demonstrating sequential steps of branching, expanding, remodeling, pruning, and clear delineation of lumens within fibrin gel scaffolds. Our findings demonstrate an in vitro model for generating mature microvascular networks within 3D microfluidic fibrin gel scaffolds (2.5 mg/mL), and furthermore suggest the importance of gel concentration and composition in promoting the maturation of microvascular networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Allen, P., J. Melero-Martin, and J. Bischoff. Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. Tissue Eng. Regen. Med. 5:e74–e86, 2011.

    Article  Google Scholar 

  2. Arganda-Carreras, I., R. Fernandez-Gonzalez, A. Munoz-Barrutia, and C. Ortiz-De-Solorzano. 3D reconstruction of histological sections: Application to mammary gland tissue. Microsc. Res. Techniq. 73:1019–1029, 2010.

    Article  Google Scholar 

  3. Baudin, B., A. Bruneel, N. Bosselut, and M. Vaubourdolle. A protocol for isolation and culture of human umbilical vein endothelial cells. Nat. Protoc. 2:481–485, 2007.

    Article  Google Scholar 

  4. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438:932–936, 2005.

    Article  Google Scholar 

  5. Carrion, B., C. P. Huang, C. M. Ghajar, S. Kachgal, E. Kniazeva, N. L. Jeon, and A. J. Putnam. Recreating the perivascular niche ex vivo using a microfluidic approach. Biotechnol. Bioeng. 107:1020–1028, 2010.

    Article  Google Scholar 

  6. Chen, Y. C., R. Z. Lin, H. Qi, Y. Yang, H. Bae, J. M. Melero-Martin, and A. Khademhosseini. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv. Funct. Mater. 22:2027–2039, 2012.

    Article  Google Scholar 

  7. Chung, S., R. Sudo, P. J. Mack, C. R. Wan, V. Vickerman, and R. D. Kamm. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip. 9:269–275, 2009.

    Article  Google Scholar 

  8. Critser, P. J., S. T. Kreger, S. L. Voytik-Harbin, and M. C. Yoder. Collagen matrix physical properties modulate endothelial colony forming cell-derived vessels in vivo. Microvasc. Res. 80:23–30, 2010.

    Article  Google Scholar 

  9. Cummings, C. L., D. Gawlitta, R. M. Nerem, and J. P. Stegemann. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials 25:3699–3706, 2004.

    Article  Google Scholar 

  10. Dejana, E., and D. Vestweber. The role of VE-cadherin in vascular morphogenesis and permeability control. Prog. Mol. Biol. Transl. Sci. 116:119–144, 2013.

    Article  Google Scholar 

  11. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  Google Scholar 

  12. Drake, C. J. Embryonic and adult vasculogenesis. Birth Defects Res. C. 69:73–82, 2003.

    Article  Google Scholar 

  13. Hsu, Y. H., M. L. Moya, P. Abiri, C. C. W. Hughes, S. C. George, and A. P. Lee. Full range physiological mass transport control in 3D tissue cultures. Lab Chip. 13:81–89, 2013.

    Article  Google Scholar 

  14. Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9:685–693, 2003.

    Article  Google Scholar 

  15. Kim, C., S. Chung, L. Yuchun, M. C. Kim, J. K. Chan, H. H. Asada, and R. D. Kamm. In vitro angiogenesis assay for the study of cell-encapsulation therapy. Lab Chip. 12:2942–2950, 2012.

    Article  Google Scholar 

  16. Kim, S., H. Lee, M. Chung, and N. L. Jeon. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip. 13:1489–1500, 2013.

    Article  Google Scholar 

  17. Kniazeva, E., S. Kachgal, and A. J. Putnam. Effects of extracellular matrix density and mesenchymal stem cells on neovascularization in vivo. Tissue Eng. Part A. 17:905–914, 2011.

    Article  Google Scholar 

  18. Koh, W., A. N. Stratman, A. Sacharidou, and G. E. Davis. In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol. 443:83–101, 2008.

    Article  Google Scholar 

  19. Kothapalli, C. R., E. van Veen, S. de Valence, S. Chung, I. K. Zervantonakis, F. B. Gertler, and R. D. Kamm. A high-throughput microfluidic assay to study neurite response to growth factor gradients. Lab Chip. 11:497–507, 2011.

    Article  Google Scholar 

  20. Krieger, M., M. P. Scott, P. T. Matsudaira, H. F. Lodish, J. E. Darnell, L. Zipursky, C. Kaiser, and A. Berk. Molecular Cell Biology (5h ed.). New York: W. H. Freeman and CO., ISBN 0-7167-4366-3, 2004.

  21. Lai, V. K., C. R. Frey, A. M. Kerandi, S. P. Lake, R. T. Tranquillo, and V. H. Barocas. Microstructural and mechanical differences between digested collagen-fibrin co-gels and pure collagen and fibrin gels. Acta Biomater. 8:4031–4032, 2012.

    Article  Google Scholar 

  22. Lai, V. K., S. P. Lake, C. R. Frey, R. T. Tranquillo, and V. H. Barocas. Mechanical behavior of collagen-fibrin co-gels reflects transition from series to parallel interactions with increasing collagen content. J. Biomech. Eng. 134:011004, 2012.

    Article  Google Scholar 

  23. Laurens, N., M. A. Engelse, C. Jungerius, C. W. Lowik, V. W. M. van Hinsbergh, and P. Koolwijk. Single and combined effects of alphavbeta3- and alpha5beta1-integrins on capillary tube formation in a human fibrinous matrix. Angiogenesis 12:275–285, 2009.

    Article  Google Scholar 

  24. Lee, T. C., R. L. Kashyap, and C. N. Chu. Building skeleton models via 3-D medial surface axis thinning algorithms. Cvgip-Graph Model Im. 56:462–478, 1994.

    Article  Google Scholar 

  25. Manoussaki, D., S. R. Lubkin, R. B. Vernon, and J. D. Murray. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor. 44:271–282, 1996.

    Article  Google Scholar 

  26. Merks, R. M., E. D. Perryn, A. Shirinifard, and J. A. Glazier. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4:e1000163, 2008.

    Article  MathSciNet  Google Scholar 

  27. Murray, J. D. On the mechanochemical theory of biological pattern formation with application to vasculogenesis. C. R. Biol. 326:239–252, 2003.

    Article  Google Scholar 

  28. Parsa, H., R. Upadhyay, and S. K. Sia. Uncovering the behaviors of individual cells within a multicellular microvascular community. Proc. Natl. Acad. Sci. U.S.A. 108:5133–5138, 2011.

    Article  Google Scholar 

  29. Patan, S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J. Neurooncol. 50:1–15, 2000.

    Article  Google Scholar 

  30. Raeber, G. P., M. P. Lutolf, and J. A. Hubbell. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys. J. 89:1374–1388, 2005.

    Article  Google Scholar 

  31. Rao, R. R., A. W. Peterson, J. Ceccarelli, A. J. Putnam, and J. P. Stegemann. Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis 15:253–264, 2012.

    Article  Google Scholar 

  32. Rowe, S. L., and J. P. Stegemann. Interpenetrating collagen-fibrin composite matrices with varying protein contents and ratios. Biomacromolecules 7:2942–2948, 2006.

    Article  Google Scholar 

  33. Ruegg, C., and A. Mariotti. Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cell. Mol. Life Sci. 60:1135–1157, 2003.

    Google Scholar 

  34. Selimovic, S., M. R. Dokmeci, and A. Khademhosseini. Research highlights. Lab Chip. 12:5127–5129, 2012.

    Article  Google Scholar 

  35. Serini, G., D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi, and F. Bussolino. Modeling the early stages of vascular network assembly. EMBO J. 22:1771–1779, 2003.

    Article  Google Scholar 

  36. Sieminski, A. L., R. P. Hebbel, and K. J. Gooch. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp. Cell Res. 297:574–584, 2004.

    Article  Google Scholar 

  37. Sudo, R., S. Chung, I. K. Zervantonakis, V. Vickerman, Y. Toshimitsu, L. G. Griffith, and R. D. Kamm. Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J. 23:2155–2164, 2009.

    Article  Google Scholar 

  38. Vailhe, B., M. Lecomte, N. Wiernsperger, and L. Tranqui. The formation of tubular structures by endothelial cells is under the control of fibrinolysis and mechanical factors. Angiogenesis 2:331–344, 1998.

    Article  Google Scholar 

  39. Vailhe, B., D. Vittet, and J. J. Feige. In vitro models of vasculogenesis and angiogenesis. Lab. Invest. 81:439–452, 2001.

    Article  Google Scholar 

  40. van Hinsbergh, V. W., M., A. Collen, and P. Koolwijk. Role of fibrin matrix in angiogenesis. N. Y. Acad. Sci. 936:426–437, 2001.

  41. Vernon, R. B., J. C. Angello, M. L. Iruela-Arispe, T. F. Lane, and E. H. Sage. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66:536–547, 2003.

    Google Scholar 

  42. Vickerman, V., J. Blundo, S. Chung, and R. Kamm. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip. 8:1468–1477, 2008.

    Article  Google Scholar 

  43. Wong, K. H., J. M. Chan, R. D. Kamm, and J. Tien. Microfluidic models of vascular functions. Annu. Rev. Bomed. Eng. 14:205–230, 2012.

    Article  Google Scholar 

  44. Yeon, J. H., H. R. Ryu, M. Chung, Q. P. Hu, and N. L. Jeon. In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices. Lab Chip. 12:2815–2822, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Lee L. S. Ong and M. S. Chong for very useful discussions. HUVECs were kindly provided by Dr. M. S. Chong (Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore). We also thank Sihua Huang for her support with preparing devices and Grace S. Park for her assistance with figure preparation. This work was supported by funding from the Singapore-MIT Alliance for Research and Technology (SMART) Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Kamm.

Additional information

Associate Editor Philip Leduc oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2675 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y.K., Tu, TY., Lim, S.H. et al. In Vitro Microvessel Growth and Remodeling within a Three-Dimensional Microfluidic Environment. Cel. Mol. Bioeng. 7, 15–25 (2014). https://doi.org/10.1007/s12195-013-0315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-013-0315-6

Keywords

Navigation