Skip to main content
Log in

Mechanical Strain Controls Endothelial Patterning During Angiogenic Sprouting

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Cyclic strain is known to affect endothelial cell phenotype, but its effects on neovascular pattern formation remain poorly understood. To examine how cyclic strain affects angiogenesis, we designed a stretchable, polydimethylsiloxane-based multi-well system that supports a 3D cell culture model of angiogenesis, consisting of endothelial cells coated onto microcarrier beads embedded in a fibrin gel with a supporting monolayer of smooth muscle cells atop the gel. Calibration of the integrated system showed a linear relationship between applied strain and strain within the fibrin gel. Capillaries formed in unstrained conditions grew radially outward, while 3D constructs subjected to 10% cyclic strain at 0.7 Hz sprouted in a direction parallel to the applied strain. Removal of the tissue from the strain stimulus eliminated directional sprouting. To better understand this directional biasing, the strain field surrounding a microcarrier bead was modeled computationally, showing local strain anisotropy surrounding a microcarrier. Confocal reflection microscopy revealed only modest fiber alignment in regions of the gel close to microcarriers, with no evidence of alignment further away. Together, these data showed that externally applied cyclic strain can spatially pattern capillaries in a 3D culture, and suggests a means to control pattern formation in engineered tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Baker, E. L., R. T. Bonnecaze, and M. H. Zaman. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys. J. 97:1013–1021, 2009.

    Article  Google Scholar 

  2. Balestrini, J. L., J. K. Skorinko, A. Hera, G. R. Gaudette, and K. L. Billiar. Applying controlled non-uniform deformation for in vitro studies of cell mechanobiology. Biomech. Model. Mechanobiol. 9:329–344, 2010.

    Article  Google Scholar 

  3. Barbee, K. A., E. J. Macarak, and L. E. Thibault. Strain measurements in cultured vascular smooth muscle cells subjected to mechanical deformation. Ann. Biomed. Eng. 22:14–22, 1994.

    Article  Google Scholar 

  4. Boerckel, J. D., B. A. Uhrig, N. J. Willett, N. Huebsch, and R. E. Guldberg. Mechanical regulation of vascular growth and tissue regeneration in vivo. Proc. Natl Acad. Sci. USA 108:E674–E680, 2011.

    Article  Google Scholar 

  5. Cecchi, E., C. Giglioli, S. Valente, C. Lazzeri, G. F. Gensini, R. Abbate, and L. Mannini. Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis 214:249–256, 2011.

    Article  Google Scholar 

  6. Chen, X., A. S. Aledia, C. M. Ghajar, C. K. Griffith, A. J. Putnam, C. C. Hughes, and S. C. George. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng. Part A 15:1363–1371, 2009.

    Article  Google Scholar 

  7. Ghajar, C. M., K. S. Blevins, C. C. Hughes, S. C. George, and A. J. Putnam. Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng. 12:2875–2888, 2006.

    Article  Google Scholar 

  8. Ghajar, C. M., S. Kachgal, E. Kniazeva, H. Mori, S. V. Costes, S. C. George, and A. J. Putnam. Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp. Cell Res. 316:813–825, 2010.

    Article  Google Scholar 

  9. Ingber, D. E. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91:877–887, 2002.

    Article  Google Scholar 

  10. Jeong, S. I., J. H. Kwon, J. I. Lim, S. W. Cho, Y. Jung, W. J. Sung, S. H. Kim, Y. H. Kim, Y. M. Lee, B. S. Kim, C. Y. Choi, and S. J. Kim. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials 26:1405–1411, 2005.

    Article  Google Scholar 

  11. Kang, H., Q. Wen, P. A. Janmey, J. X. Tang, E. Conti, and F. C. MacKintosh. Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels. J. Phys. Chem. B 113:3799–3805, 2009.

    Article  Google Scholar 

  12. Kilarski, W. W., B. Samolov, L. Petersson, A. Kvanta, and P. Gerwins. Biomechanical regulation of blood vessel growth during tissue vascularization. Nat. Med. 15:657–664, 2009.

    Article  Google Scholar 

  13. Kniazeva, E., and A. J. Putnam. Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am. J. Physiol. Cell Physiol. 297:C179–C187, 2009.

    Article  Google Scholar 

  14. Korff, T., and H. G. Augustin. Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J. Cell Sci. 112(Pt 19):3249–3258, 1999.

    Google Scholar 

  15. Kotlarchyk, M. A., S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick. Concentration independent modulation of local micromechanics in a fibrin gel. PLoS One 6:e20201, 2011.

    Article  Google Scholar 

  16. Krishnan, L., C. J. Underwood, S. Maas, B. J. Ellis, T. C. Kode, J. B. Hoying, and J. A. Weiss. Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc. Res. 78:324–332, 2008.

    Article  Google Scholar 

  17. Lee, A. A., T. Delhaas, L. K. Waldman, D. A. MacKenna, F. J. Villarreal, and A. D. McCulloch. An equibiaxial strain system for cultured cells. Am. J. Physiol. 271:C1400–C1408, 1996.

    Google Scholar 

  18. Lopez, J. I., I. Kang, W. K. You, D. M. McDonald, and V. M. Weaver. In situ force mapping of mammary gland transformation. Integr. Biol. Quant. Biosci. Nano to Macro 3:910–921, 2011.

    Google Scholar 

  19. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.

    Article  Google Scholar 

  20. Matsumoto, T., J. Sasaki, E. Alsberg, H. Egusa, H. Yatani, and T. Sohmura. Three-dimensional cell and tissue patterning in a strained fibrin gel system. PLoS One 2:e1211, 2007.

    Article  Google Scholar 

  21. Matsumoto, T., Y. C. Yung, C. Fischbach, H. J. Kong, R. Nakaoka, and D. J. Mooney. Mechanical strain regulates endothelial cell patterning in vitro. Tissue Eng. 13:207–217, 2007.

    Article  Google Scholar 

  22. Mori, D., G. David, J. D. Humphrey, and J. E. Moore, Jr. Stress distribution in a circular membrane with a central fixation. J. Biomech. Eng. 127:549–553, 2005.

    Article  Google Scholar 

  23. Morin, K. T., and R. T. Tranquillo. Guided sprouting from endothelial spheroids in fibrin gels aligned by magnetic fields and cell-induced gel compaction. Biomaterials 32:6111–6118, 2011.

    Google Scholar 

  24. Nakatsu, M. N., R. C. Sainson, J. N. Aoto, K. L. Taylor, M. Aitkenhead, S. Perez-del-Pulgar, P. M. Carpenter, and C. C. Hughes. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and angiopoietin-1. Microvasc. Res. 66:102–112, 2003.

    Article  Google Scholar 

  25. Nehls, V., and D. Drenckhahn. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc. Res. 50:311–322, 1995.

    Article  Google Scholar 

  26. Newman, A. C., M. N. Nakatsu, W. Chou, P. D. Gershon, and C. C. Hughes. The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol. Biol. Cell 22:3791–3800, 2011.

    Article  Google Scholar 

  27. Peyton, S. R., C. M. Ghajar, C. B. Khatiwala, and A. J. Putnam. The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem. Biophys. 47:300–320, 2007.

    Article  Google Scholar 

  28. Thodeti, C. K., B. Matthews, A. Ravi, A. Mammoto, K. Ghosh, A. L. Bracha, and D. E. Ingber. TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ. Res. 104:1123–1130, 2009.

    Article  Google Scholar 

  29. Tranquillo, R. T., M. A. Durrani, and A. G. Moon. Tissue engineering science: consequences of cell traction force. Cytotechnology 10:225–250, 1992.

    Article  Google Scholar 

  30. Yazdani, S. K., B. W. Tillman, J. L. Berry, S. Soker, and R. L. Geary. The fate of an endothelium layer after preconditioning. J. Vasc. Surg. 51:174–183, 2010.

    Article  Google Scholar 

  31. Yung, Y. C., J. Chae, M. J. Buehler, C. P. Hunter, and D. J. Mooney. Cyclic tensile strain triggers a sequence of autocrine and paracrine signaling to regulate angiogenic sprouting in human vascular cells. Proc. Natl Acad. Sci. USA 106:15279–15284, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Rahul Singh for providing data for the finite element model and Stephanie Grainger for helpful discussions. This work was supported by grants R01-HL085339 and R01-HL085339-S1 from the NIH.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Putnam.

Additional information

Associate Editor David J. Odde oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12195_2012_242_MOESM1_ESM.tif

Supplemental Fig. 1: HUVECs fail to form capillary-like sprouts in the absence of interstitial cells. HUVEC-only cultures under static (A) and strained (B) conditions at day 5. Cells migrate off the microcarrier beads but not organize into capillary-like structures (TIF 722 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceccarelli, J., Cheng, A. & Putnam, A.J. Mechanical Strain Controls Endothelial Patterning During Angiogenic Sprouting. Cel. Mol. Bioeng. 5, 463–473 (2012). https://doi.org/10.1007/s12195-012-0242-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-012-0242-y

Keywords

Navigation