Skip to main content

Advertisement

Log in

A Cell Culture System for the Structure and Hydrogel Properties of Basement Membranes: Application to Capillary Walls

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

In specialized capillary beds such as the kidney glomerulus, the sheet-like structure of the basement membrane (BM) in conjunction with opposing monolayers of endothelium and epithelium form the functioning filtration unit of the kidney. Using a novel cross-linking method on a collagen substrate, we have created a hydrogel scaffold to substitute for the BM. A simple casting method was used to create thin films of the hydrogel scaffold (1–5 μm), that were suitable for long-term static culture, and supported cell attachment and long term cell viability similar to a standard type I collagen substrate. Bulk diffusion and protein permeability of the hydrogel scaffold were evaluated, in addition to its use in a perfusion chamber where it withstood hydraulic pressures typical for glomerular capillaries. This system thus provided a suitable cell substrate for the co-culture of renal epithelial podocytes and endothelial cells in a device that replicates the geometry of the in vivo juxtaposition of the two cell types in relation to their BM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

BM:

Basement membrane

BSA:

Bovine serum albumin

HRP:

Horseradish peroxidase

T-gelatin:

Tyramine-substituted gelatin

References

  1. Akis, N., and M. P. Madaio. Isolation, culture, and characterization of endothelial cells from mouse glomeruli. Kidney Int. 65:2223–2227, 2004.

    Article  Google Scholar 

  2. Aslam, M., and A. Dent. Bioconjugation: Protein Coupling Techniques for the Biomedical Sciences, Vol. 188. London: Macmillan, pp. 369–372, 1998.

    Google Scholar 

  3. Ballermann, B. J. Contribution of the endothelium to the glomerular permselectivity barrier in health and disease. Nephron Physiol. 106:19–25, 2007.

    Article  Google Scholar 

  4. Comper, W. D., A. S. Lee, M. Tay, and Y. Adal. Anionic charge concentration of rat kidney glomeruli and glomerular basement membrane. Biochem. J. 289:647–652, 1993.

    Google Scholar 

  5. Cushing, M. C., and K. S. Anseth. Materials science. Hydrogel cell cultures. Science 316:1133–1134, 2007.

    Article  Google Scholar 

  6. Darr, A., and A. Calabro. Synthesis and characterization of tyramine-based hyaluronan hydrogels. J. Mater. Sci. Mater. Med. 20:33–44, 2009.

    Article  Google Scholar 

  7. Deen, W. M., M. J. Lazzara, and B. D. Myers. Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol. 281:F579–F596, 2001.

    Google Scholar 

  8. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  Google Scholar 

  9. Faul, C., K. Asanuma, E. Yanagida-Asanuma, K. Kim, and P. Mundel. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 17:428–437, 2007.

    Article  Google Scholar 

  10. Furtmuller, P. G., M. Zederbauer, W. Jantschko, J. Helm, M. Bogner, C. Jakopitsch, and C. Obinger. Active site structure and catalytic mechanisms of human peroxidases. Arch. Biochem. Biophys. 445:199–213, 2006.

    Article  Google Scholar 

  11. Gehrke, S. H., J. P. Fisher, M. Palasis, and M. E. Lund. Factors determining hydrogel permeability. Ann. N. Y. Acad. Sci. 831:179–207, 1997.

    Article  Google Scholar 

  12. Griffith, L. G., and M. A. Swartz. Capturing complex 3D tissue physiology in vitro. Natl Rev. Mol. Cell Biol. 7:211–224, 2006.

    Article  Google Scholar 

  13. Haraldsson, B., J. Nystrom, and W. M. Deen. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88:451–487, 2008.

    Article  Google Scholar 

  14. Huh, D., B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber. Reconstituting organ-level lung functions on a chip. Science 328:1662–1668, 2010.

    Article  Google Scholar 

  15. Hunt, J. L., M. R. Pollak, and B. M. Denker. Cultured podocytes establish a size-selective barrier regulated by specific signaling pathways and demonstrate synchronized barrier assembly in a calcium switch model of junction formation. J. Am. Soc. Nephrol. 16:1593–1602, 2005.

    Article  Google Scholar 

  16. Janmey, P. A., and R. T. Miller. Mechanisms of mechanical signaling in development and disease. J. Cell Sci. 124:9–18, 2011.

    Article  Google Scholar 

  17. Janmey, P. A., and D. A. Weitz. Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem. Sci. 29:364–370, 2004.

    Article  Google Scholar 

  18. Kleinman, H. K., and G. R. Martin. Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15:378–386, 2005.

    Article  Google Scholar 

  19. Kretzler, M. Regulation of adhesive interaction between podocytes and glomerular basement membrane. Microsc. Res. Tech. 57:247–253, 2002.

    Article  Google Scholar 

  20. Lutolf, M. P., and J. A. Hubbell. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23:47–55, 2005.

    Article  Google Scholar 

  21. Maddox, D. A., and B. M. Brenner. Glomerular ultrafiltration. In: The Kidney (6th ed.). Philadelphia: WB Saunders, pp. 319–328, 2000.

  22. Maina, J. N., and J. B. West. Thin and strong! The bioengineering dilemma in the structural and functional design of the blood–gas barrier. Physiol. Rev. 85:811–844, 2005.

    Article  Google Scholar 

  23. Martin, G. R., R. Timpl, and K. Kuhn. Basement membrane proteins: molecular structure and function. Adv. Protein Chem. 39:1–50, 1988.

    Article  Google Scholar 

  24. Miner, J. H. Glomerular basement membrane composition and the filtration barrier. Pediatr. Nephrol. 26:1413–1417, 2011.

    Article  Google Scholar 

  25. Moore, S., D. H. Spackman, and W. H. Stein. Automatic recording apparatus for use in the chromatography of amino acids. Fed. Proc. 17:1107–1115, 1958.

    Google Scholar 

  26. Moreira Teixeira, L. S., J. Feijen, C. A. van Blitterswijk, P. J. Dijkstra, and M. Karperien. Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials 33:1281–1290, 2012.

    Article  Google Scholar 

  27. Mundel, P., J. Reiser, B. A. Zuniga Mejia, H. Pavenstadt, G. R. Davidson, W. Kriz, and R. Zeller. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp. Cell Res. 236:248–258, 1997.

    Article  Google Scholar 

  28. Patrakka, J., and K. Tryggvason. Molecular make-up of the glomerular filtration barrier. Biochem. Biophys. Res. Commun. 396:164–169, 2010.

    Article  Google Scholar 

  29. Pozzi, A., and R. Zent. Integrins: sensors of extracellular matrix and modulators of cell function. Nephron Exp. Nephrol. 94:e77–e84, 2003.

    Article  Google Scholar 

  30. Schnaper, H. W., H. K. Kleinman, and D. S. Grant. Role of laminin in endothelial cell recognition and differentiation. Kidney Int. 43:20–25, 1993.

    Article  Google Scholar 

  31. Schwartz, E. J., A. Cara, H. Snoeck, M. D. Ross, M. Sunamoto, J. Reiser, P. Mundel, and P. E. Klotman. Human immunodeficiency virus-1 induces loss of contact inhibition in podocytes. J. Am. Soc. Nephrol. 12:1677–1684, 2001.

    Google Scholar 

  32. Sehgal, D., and I. K. Vijay. A method for the high efficiency of water-soluble carbodiimide-mediated amidation. Anal. Biochem. 218:87–91, 1994.

    Article  Google Scholar 

  33. Shankland, S. J., J. W. Pippin, J. Reiser, and P. Mundel. Podocytes in culture: past, present, and future. Kidney Int. 72:26–36, 2007.

    Article  Google Scholar 

  34. Wang, N., and D. E. Ingber. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 66:2181–2189, 1994.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michael Madaio for providing the endothelial cell line, Zhenzhen Wu for technical assistance, and Sydney Calabro for assistance with the images. We also acknowledge the helpful input from Drs. Jeffrey Simske, John Sedor, Tyler Miller, and William Fissell for discussions and review of the manuscript. This study was supported by NIH grant DK077668 and MetroHealth Medical Center institutional funds.

Conflict of interest

The authors (AC and AD) have licensed the tyramine substitution and cross-linking technology for commercialization to Lifecore Biomedical, Inc., Chaska, MN and have received benefits for personal or professional use indirectly related to the subject matter of this manuscript. Benefits have been used for research funding at The Cleveland Clinic, a nonprofit organization, with which these authors are associated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Bruggeman.

Additional information

Associate Editor Muhammad Zaman oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruggeman, L.A., Doan, R.P., Loftis, J. et al. A Cell Culture System for the Structure and Hydrogel Properties of Basement Membranes: Application to Capillary Walls. Cel. Mol. Bioeng. 5, 194–204 (2012). https://doi.org/10.1007/s12195-012-0221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-012-0221-3

Keywords

Navigation