Skip to main content
Log in

Synthesis and characterization of tyramine-based hyaluronan hydrogels

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hyaluronan is particularly attractive for tissue engineering and repair because it: (1) is a normal component of the extracellular matrices of most mammalian tissues; (2) contributes to the biological and physical functions of these tissues; and (3) possesses excellent biocompatibility and physiochemical properties. In the present study, we characterize a two-step enzymatic cross-linking chemistry for production of tyramine-based hyaluronan hydrogels using fluorophore-assisted carbohydrate electrophoresis, enzymatic digestion, and spectroscopy including absorbance, fluorescence and 1H NMR. Substitution on hyaluronan of tyramine and other adducts from unproductive side reactions depends on the molar ratio of tyramine to carbodiimide used during the substitution (step 1) reaction. Results indicate that relatively low tyramine substitution is required to form stable hydrogels, leaving the majority of hyaluronan disaccharides unmodified. Sufficient native HA structure is maintained to allow recognition and binding by b-HABP, a HA binding complex typically found in normal cartilage biology. Hydrogels were formed from tyramine-substituted hyaluronan through a peroxidase-dependent cross-linking (step 2) reaction at hyaluronan concentrations of 2.5 mg/ml and above. Uncross-linked tyramine-substituted hyaluronan was characterized after hyaluronidase SD digestion. Cross-linked hydrogels showed increased resistance to digestion by testicular hyaluronidase and hyaluronidase SD with increasing hyaluronan concentration. Cells directly encapsulated within the hydrogels during hydrogel cross-linking remained metabolically active during 7 days of culture similar to cells cultured in monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Vinatier, J. Guicheux, G. Daculsi, P. Layrolle, P. Weiss, Biomed. Mater. Eng. 16, S107 (2006)

    PubMed  CAS  Google Scholar 

  2. J.K. Suh, H.W. Matthew, Biomaterials 21, 2589 (2000). doi:10.1016/S0142-9612(00)00126-5

  3. P. Angele, R. Kujat, M. Nerlich, J. Yoo, V. Goldberg, B. Johnstone, Tissue Eng. 5, 545 (1999). doi:10.1089/ten.1999.5.545

    Article  PubMed  CAS  Google Scholar 

  4. T.C. Laurent, U.B. Laurent, J.R. Fraser, Immunol. Cell Biol. 74, A1 (1996). doi:10.1038/icb.1996.32

    Article  PubMed  CAS  Google Scholar 

  5. V. Gupta, J.A. Werdenberg, T.L. Blevins, K.J. Grande-Allen, Tissue Eng. 13, 41 (2007). doi:10.1089/ten.2006.0091

    Article  PubMed  CAS  Google Scholar 

  6. W.S. Turner, E. Schmelzer, R. McClelland, E. Wauthier, W. Chen, L.M. Reid, J. Biomed. Mater. Res. B: Appl. Biomater. 82, 156 (2007). doi:10.1002/jbm.b.30717

    PubMed  Google Scholar 

  7. X. Jia, Y. Yeo, R.J. Clifton, T. Jiao, D.S. Kohane, J.B. Kobler et al., Biomacromolecules 7, 3336 (2006). doi:10.1021/bm0604956

    Article  PubMed  CAS  Google Scholar 

  8. Y. Luo, K.R. Kirker, G.D. Prestwich, Modification of natural polymers: hyaluronic acid, ed. by A. Atala, R. Lanza, in Methods of Tissue Engineering (Academic Press, San Diego, 2001), pp. 539–553

  9. N.E. Larsen, C.T. Pollak, K. Reiner, E. Leshchiner, E.A. Balazs, J. Biomed. Mater. Res. 27, 1129 (1993). doi:10.1002/jbm.820270903

    Article  PubMed  CAS  Google Scholar 

  10. L. Benedetti, R. Cortivo, T. Berti, A. Berti, F. Pea, M. Mazzo et al., Biomaterials 14, 1154 (1993). doi:10.1016/0142-9612(93)90160-4

    Article  PubMed  CAS  Google Scholar 

  11. J.J. Young, K.M. Cheng, T.L. Tsou, H.W. Liu, H.J. Wang, J. Biomater. Sci. Polym. Ed. 15, 767 (2004). doi:10.1163/156856204774196153

    Article  PubMed  CAS  Google Scholar 

  12. D.L. Nettles, T.P. Vail, M.T. Morgan, M.W. Grinstaff, L.A. Setton, Ann. Biomed. Eng. 32, 391 (2004). doi:10.1023/B:ABME.0000017552.65260.94

    Article  PubMed  Google Scholar 

  13. X.Z. Shu, Y. Liu, Y. Luo, M.C. Roberts, G.D. Prestwich, Biomacromolecules 3, 1304 (2002). doi:10.1021/bm025603c

    Article  PubMed  CAS  Google Scholar 

  14. J.L. Vanderhooft, B.K. Mann, G.D. Prestwich, Biomacromolecules 8, 2883 (2007). doi:10.1021/bm0703564

    Article  PubMed  CAS  Google Scholar 

  15. J. Luo, C. Pardin, X.X. Zhu, W.D. Lubell, J. Comb. Chem. 9, 582 (2007). doi:10.1021/cc060132+

    Article  PubMed  CAS  Google Scholar 

  16. R.N. Chen, H.O. Ho, M.T. Sheu, Biomaterials 26, 4229 (2005). doi:10.1016/j.biomaterials.2004.11.012

    Article  PubMed  CAS  Google Scholar 

  17. E.P. Broderick, D.M. O’Halloran, Y.A. Rochev, M. Griffin, R.J. Collighan, A.S. Pandit, J. Biomed. Mater. Res. B: Appl. Biomater. 72, 37 (2005). doi:10.1002/jbm.b.30119

    Article  PubMed  Google Scholar 

  18. M.E. Jones, P.B. Messersmith, Biomaterials 28, 5215 (2007). doi:10.1016/j.biomaterials.2007.08.026

    Article  PubMed  CAS  Google Scholar 

  19. T.J. Sanborn, P.B. Messersmith, A.E. Barron, Biomaterials 23, 2703 (2002). doi:10.1016/S0142-9612(02)00002-9

    Article  PubMed  CAS  Google Scholar 

  20. S. Sakai, K. Kawakami, Acta Biomater. 3, 495 (2007). doi:10.1016/j.actbio.2006.12.002

    Article  PubMed  CAS  Google Scholar 

  21. R. Jin, C. Hiemstra, Z. Zhong, J. Feijen, Biomaterials 28, 2791 (2007). doi:10.1016/j.biomaterials.2007.02.032

    Article  PubMed  CAS  Google Scholar 

  22. Y. Ogushi, S. Sakai, K. Kawakami, J. Biosci. Bioeng. 104, 30 (2007). doi:10.1263/jbb.104.30

    Article  PubMed  CAS  Google Scholar 

  23. S.J. Sophia, A. Singh, D.L. Kaplan, J. Macromol. Sci, Part A 39, 1151 (2002)

    Google Scholar 

  24. B. Kalra, A. Kumar, R.A. Gross, Polym. Reprints 41, 1805 (2000)

    Google Scholar 

  25. J. Chan, A. Darr, D. Alam, A. Calabro, Am. J. Cosmet. Surg. 22, 105 (2005)

    Google Scholar 

  26. K. Kamohara, M. Banbury, A. Calabro, Z.B. Popovic, A. Darr, Y. Ootaki et al., Heart Surg. Forum 9, 888 (2006). doi:10.1532/HSF98.20061075

    Article  Google Scholar 

  27. M. Kurisawa, J.E. Chung, Y.Y. Yang, S.J. Gao, H. Uyama, Chem. Commun. (Camb.), 4312 (2005). doi:10.1039/b506989 k

  28. N. Blumenkrantz, G. Asboe-Hansen, Anal. Biochem. 54, 484 (1973). doi:10.1016/0003-2697(73)90377-1

    Article  PubMed  CAS  Google Scholar 

  29. A. Calabro, M. Benavides, M. Tammi, V.C. Hascall, R.J. Midura, Glycobiology 10, 273 (2000). doi:10.1093/glycob/10.3.273

    Article  PubMed  CAS  Google Scholar 

  30. A. Calabro, V.C. Hascall, R.J. Midura, Glycobiology 10, 283 (2000). doi:10.1093/glycob/10.3.283

    Article  PubMed  CAS  Google Scholar 

  31. A. Calabro, R. Midura, A. Wang, L. West, A. Plaas, V.C. Hascall, Osteoarthr. Cartilage 9(Suppl A), S16 (2001)

  32. A. Calabro, V.C. Hascall, B. Caterson, Arch. Biochem. Biophys. 298, 349 (1992). doi:10.1016/0003-9861(92)90421-R

    Article  PubMed  CAS  Google Scholar 

  33. W. Selbi, C. de la Motte, V. Hascall, A. Phillips, J. Am. Soc. Nephrol. 15, 1199 (2004). doi:10.1097/01.ASN.0000125619.27422.8E

    Article  PubMed  CAS  Google Scholar 

  34. A. Wang, V.C. Hascall, J. Biol. Chem. 279, 10279 (2004). doi:10.1074/jbc.M312045200

    Article  PubMed  CAS  Google Scholar 

  35. M. Aslam, A. Dent, Bioconjugation: Protein Coupling Techniques for the Biomedical Sciences (Macmillan Reference Ltd., London, 1998)

    Google Scholar 

  36. D. Sehgal, I.K. Vijay, Anal. Biochem. 218, 87 (1994). doi:10.1006/abio.1994.1144

    Article  PubMed  CAS  Google Scholar 

  37. Q.P. Lei, D.H. Lamb, A.G. Shannon, X. Cai, R.K. Heller, M. Huang et al., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 813, 103 (2004). doi:10.1016/j.jchromb.2004.09.015

    Article  PubMed  CAS  Google Scholar 

  38. T. Matsumoto, E.E. Nieuwenhuis, R.L. Cisneros, B. Ruiz-Perez, K. Yamaguchi, R.S. Blumberg et al., J. Med. Microbiol. 53, 97 (2004). doi:10.1099/jmm.0.05386-0

    Article  PubMed  CAS  Google Scholar 

  39. B. Ruiz-Perez, R.L. Cisneros, T. Matsumoto, R.J. Miller, G. Vasios, P. Calias et al., J. Infect. Dis. 188, 378 (2003). doi:10.1086/376556

    Article  PubMed  CAS  Google Scholar 

  40. S.M. Holmbeck, P.A. Petillo, L.E. Lerner, Biochemistry 33, 14246 (1994). doi:10.1021/bi00251a037

    Article  PubMed  CAS  Google Scholar 

  41. A.J. Gross, I.W. Sizer, J. Biol. Chem. 234, 1611 (1959)

    PubMed  CAS  Google Scholar 

  42. K.G. Welinder, Biochim. Biophys. Acta 1080, 215 (1991)

    PubMed  CAS  Google Scholar 

  43. M.D. Berry, J. Neurochem. 90, 257 (2004). doi:10.1111/j.1471-4159.2004.02501.x

    Article  PubMed  CAS  Google Scholar 

  44. S.O. Andersen, Insect Biochem. Mol. Biol. 34, 459 (2004). doi:10.1016/j.ibmb.2004.02.006

    Article  PubMed  CAS  Google Scholar 

  45. T.G. Huggins, M.W. Staton, D.G. Dyer, N.J. Detorie, M.D. Walla, J.W. Baynes et al., Ann. NY Acad. Sci. 663, 436 (1992). doi:10.1111/j.1749-6632.1992.tb38692.x

    Article  PubMed  CAS  ADS  Google Scholar 

  46. U. auf dem Keller, A. Kumin, S. Braun, S. Werner, J. Invest. Dermatol. Symp. Proc. 11, 106 (2006). doi:10.1038/sj.jidsymp.5650001

    Google Scholar 

  47. K.J. Davies, Biochem. Soc. Symp. 61, 1 (1995)

    PubMed  CAS  Google Scholar 

  48. L.L. Faltz, C.B. Caputo, J.H. Kimura, J. Schrode, V.C. Hascall, J. Biol. Chem. 254, 1381 (1979)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Mizutani Foundation for Glycoscience and the Cleveland Clinic for their generous financial support. The authors would also like to acknowledge Christine Harris, Christine Roche, and Melanie Moore for their technical assistance, and Dr. Thomas Gerkin for his contribution to the NMR data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Calabro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darr, A., Calabro, A. Synthesis and characterization of tyramine-based hyaluronan hydrogels. J Mater Sci: Mater Med 20, 33–44 (2009). https://doi.org/10.1007/s10856-008-3540-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3540-0

Keywords

Navigation