Skip to main content
Log in

Air–Liquid Interface Culture of Nasal Epithelial Cells on Denuded Amniotic Membranes

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Laboratory models of the respiratory lining with mucin secreting epithelial goblet cells have been obtained by culturing epithelial cells under air–liquid interface (ALI) conditions, which require specific wells with semi-permeable substrates. In this study nasal epithelial cells (NEC) were successfully cultured on denuded amniotic membrane (AM) under ALI conditions. The cells adhered well on both sides of the denuded AM (i.e., the basement membrane or spongy layer) and proliferated to confluency at the same time as cells grown on a synthetic membrane. The cytoskeleton structure of cells grown on denuded AMs appeared to be denser and firmer than that of cells cultured on synthetic membranes. Cultures on the denuded AM differentiated to contain goblet cells which produce and secrete mucins and ciliated cells. Cells cultured on the denuded AM were more stable under airflow conditions than cells on the synthetic membranes. The results of this study suggest that NEC culture on denuded AM and under ALI conditions creates a stable and well-differentiated in vitro model of the nasal lining for laboratory studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abdullah, L., S. W. Davis, L. Burch, M. Yamauchi, S. H. Randell, P. Nettesheim, and C. W. Davis. P2u purinoceptor regulation of mucin secretion in SPOC1 cells, a goblet cell line from the airways. Biochem. J. 316:943–951, 1996.

    Google Scholar 

  2. Adler, K. B., P. W. Cheng, and K. C. Kim. Characterization of guinea pig tracheal epithelial cells maintained in biphasic organotypic culture: cellular composition and biochemical analysis of released glycoconjugates. Am. J. Respir. Cell Mol. Biol. 2:145–154, 1990.

    Google Scholar 

  3. Agha-Mir-Salim, P., O. Rauhut, and H. J. Merker. Electron and fluorescence microscopic investigations on composition and structure of the epithelial basement membrane of the human inferior concha. Eur. Arch. Otolaryngol. 250:401–407, 1993.

    Article  Google Scholar 

  4. Bajoria, R., T. A. Ryedr, and N. M. Fisk. Transport and metabolism of thyrotrophin releasing hormone across the fetal membrane. J. Clin. Endocrinol. Metab. 82:3399–3407, 1997.

    Article  Google Scholar 

  5. Booth, B. W., T. Sandifer, E. L. Martin, and L. D. Martin. IL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17. Respir. Res. 8:51–63, 2007.

    Article  Google Scholar 

  6. Bourne, G. L. The anatomy of the human amnion and chorion. Proc. R. Soc. Med. 59:1127–1128, 1960.

    Google Scholar 

  7. Braga, V. Epithelial cell shape: cadherins and small GTPases. Exp. Cell Res. 261:83–90, 2000.

    Article  Google Scholar 

  8. Calvin, S. E., and M. L. Oyen. Microstructure and mechanics of the chorioamnion membrane with an emphasis on fracture properties. Ann. N. Y. Acad. Sci. 1101:166–185, 2007.

    Article  Google Scholar 

  9. Capeáns, C., A. Piñeiro, M. Pardo, C. Sueiro-López, M. J. Blanco, F. Domínguez, and M. Sánchez-Salorio. Amniotic membrane as support for human retinal pigment epithelium (RPE) cell growth. Acta Ophthalmol. Scand. 81:271–277, 2003.

    Article  Google Scholar 

  10. Davis, G. E., E. Engvall, S. Varon, and M. Manthorpe. Human amnion membrane as a substratum for cultured peripheral and central nervous system neurons. Brain Res. 430:1–10, 1987.

    Article  Google Scholar 

  11. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  Google Scholar 

  12. Elad, D., S. Naftali, M. Rosenfeld, and M. Wolf. Physical stresses at the air-wall interface of the human nasal cavity during breathing. J. Appl. Physiol. 100:1003–1010, 2006.

    Article  Google Scholar 

  13. Engler, A. J., H. L. Sweeney, D. E. Discher, and J. E. Schwarzbauer. Extracellular matrix elasticity directs stem cell differentiation. J. Musculoskelet. Neuronal Interact. 7:335, 2007.

    Google Scholar 

  14. Even-Tzur, N., D. Elad, U. Zaretsky, S. H. Randell, R. Haklai, and M. Wolf. Custom-designed wells and flow chamber for exposing air–liquid interface cultures to wall shear stress. Ann. Biomed. Eng. 34:1890–1895, 2006.

    Article  Google Scholar 

  15. Even-Tzur, N., Y. Kloog, M. Wolf, and D. Elad. Mucus secretion and cytoskeletal modifications in cultured nasal epithelial cells exposed to wall shear stresses. Biophys. J. 95:2998–3008, 2008.

    Article  Google Scholar 

  16. Fulcher, M. L., S. Gabriel, K. A. Burns, J. R. Yankaskas, and S. H. Randell. Well-differentiated human airway epithelial cell cultures. Methods Mol. Med. 107:183–206, 2005.

    Google Scholar 

  17. Furie, M. B., M. C. Tancinco, and C. W. Smith. Monoclonal antibodies to leukocyte integrins CD11a/CD18 and CD11b/CD18 or intercellular adhesion molecule-1 inhibit chemoattractant-stimulated neutrophil transendothelial migration in vitro. Blood 78:2089–2097, 1991.

    Google Scholar 

  18. Hopkinson, A., V. A. Shanmuganathan, T. Gray, A. M. Yeung, J. Lowe, D. K. James, and H. S. Dua. Optimization of amniotic membrane (AM) denuding for tissue engineering. Tissue Eng. Part C: Methods 14:371–381, 2008.

    Article  Google Scholar 

  19. Kallenbach, K., H. A. Fernandez, G. Seghezzi, F. G. Baumann, S. Patel, E. A. Grossi, A. C. Galloway, and P. Mignatti. A quantitative in vitro model of smooth muscle cell migration through the arterial wall using the human amniotic membrane. Arterioscler. Thromb. Vasc. Biol. 23:1008–1013, 2003.

    Article  Google Scholar 

  20. Kesimer, M., S. Kirkham, R. J. Pickles, A. G. Henderson, N. E. Alexis, G. DeMaria, D. Knight, D. J. Thornton, and J. K. Sheehan. Tracheobronchial air–liquid interface cell culture: a model for innate mucosal defense of the upper airways? Am. J. Physiol. Lung Cell. Mol. Physiol. 296:L92–L100, 2009.

    Article  Google Scholar 

  21. Koizumi, N., N. J. Fullwood, G. Bairaktaris, T. Inatomi, S. Kinoshita, and A. J. Quantock. Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane. Invest. Ophthalmol. Vis. Sci. 41:2506–2513, 2000.

    Google Scholar 

  22. Kreitzer, G., J. Schmoranzer, S. H. Low, X. Li, Y. Gan, T. Weimbs, S. M. Simon, and E. Rodriguez-Boulan. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nat. Cell Biol. 5:126–136, 2003.

    Article  Google Scholar 

  23. Lang, J. Clinical Anatomy of the Nose, Nasal Cavity and Paranasal Sinuses. Stuttgart–NewYork: George Thieme Verlag; and New York: Thieme Medical Publisher, Inc., 1989.

  24. Lemancewicz, A., H. Laudanska, T. Laudanski, A. Karpiuk, and S. Barta. Permeability of fetal membrane to calcium and magnesium: possible role in preterm labor. Hum. Reprod. 15:2018–2022, 2000.

    Article  Google Scholar 

  25. Leontic, E. A., and J. E. Tyson. Prolactin and fetal osmoregulation: water transport across isolated human amnion. Am. J. Physiol. 232:R124–R127, 1977.

    Google Scholar 

  26. Liotta, L. A., C. W. Lee, and D. J. Morakis. New method for preparing large surfaces of intact human basement membrane for tumor invasion studies. Cancer Lett. 11:141–152, 1980.

    Article  Google Scholar 

  27. Lodish, H., D. Baltimore, A. Berk, S. L. Zipursky, P. Matsudaira, and J. Darnell. Molecular Cell Biology. New York: Scientific American, 1997.

    Google Scholar 

  28. Meller, D., and S. C. Tseng. Conjunctival epithelial cell differentiation on amniotic membrane. Invest. Ophthalmol. Vis. Sci. 40:878–886, 1999.

    Google Scholar 

  29. Mignatti, P., R. Tsuboi, E. Robbins, and D. B. Rifkin. In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases. J. Cell Biol. 108:671–682, 1989.

    Article  Google Scholar 

  30. Moller, P. C., L. R. Partridge, R. Cox, V. Pellegrini, and D. G. Ritchie. An in vitro system for the study of tracheal epithelial cells. Tissue Cell 19:783–791, 1987.

    Article  Google Scholar 

  31. Naumanen, P., P. Lappalainen, and P. Hotulainen. Mechanisms of actin stress fibre assembly. J. Microsc. 231:446–454, 2008.

    Article  MathSciNet  Google Scholar 

  32. Niknejad, H., H. Peirovi, M. Jorjani, A. Ahmadiani, J. Ghanavi, and A. M. Seifalian. Properties of the amniotic membrane for potential use in tissue engineering. Eur. Cell Mater. 15:88–99, 2008.

    Google Scholar 

  33. Noguchi, Y., Y. Uchida, T. Endo, H. Ninomiya, A. Nomura, T. Sakamoto, Y. Goto, S. Haraoka, T. Shimokama, T. Watanabe, and S. Hasegawa. The induction of cell differentiation and polarity of tracheal epithelium cultured on the amniotic membrane. Biochem. Biophys. Res. Commun. 210:302–309, 1995.

    Article  Google Scholar 

  34. Oliver, M. G., and R. D. Specian. Cytoskeleton of intestinal goblet cells: role of actin filaments in baseline secretion. Am. J. Physiol. 259:G991–G997, 1990.

    Google Scholar 

  35. Oxlund, H., R. Helmig, J. T. Halaburt, and N. Uldbjerg. Biomechanical analysis of human chorioamniotic membranes. Eur. J. Obstet. Gynecol. Reprod. Biol. 34:247–255, 1990.

    Article  Google Scholar 

  36. Proctor, D. F., and I. Andersen. The Nose, Upper Airway Physiology and the Atmospheric Environment. Amsterdam: Elsevier Biomedical Press, 1982.

    Google Scholar 

  37. Randell, S. H., D. L. Walstad, U. E. Schwab, B. R. Grubb, and J. R. Yankaskas. Isolation and culture of airway epithelial cells from chronically infected human lungs. In Vitro Cell. Dev. Biol. Anim. 37:480–489, 2001.

    Article  Google Scholar 

  38. Randolph, G. J., and M. B. Furie. Mononuclear phagocytes egress from an in vitro model of the vascular wall by migrating across endothelium in the basal to apical direction: role of intercellular adhesion molecule 1 and the CD11/CD18 integrins. J. Exp. Med. 183:451–462, 1996.

    Article  Google Scholar 

  39. Rogers, D. F. The airway goblet cell. Int. J. Biochem. Cell Biol. 35:1–6, 2003.

    Article  Google Scholar 

  40. Ross, A. J., L. A. Dailey, L. E. Brighton, and R. B. Devlin. Transcriptional profiling of mucociliary differentiation in human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 37:169–185, 2007.

    Article  Google Scholar 

  41. Russo, R. G., C. M. Foltz, and L. A. Liotta. New invasion assay using endothelial cells grown on native human basement membrane. Clin. Exp. Metastasis 1:115–127, 1983.

    Article  Google Scholar 

  42. Saunders, C., and L. E. Limbird. Disruption of microtubules reveals two independent apical targeting mechanisms for G-protein-coupled receptors in polarized renal epithelial cells. J. Biol. Chem. 272:19035–19045, 1997.

    Article  Google Scholar 

  43. Seeds, A. E. Water transfer across the human amnion in response to osmotic gradients. Am. J. Obstet. Gynecol. 98:568–571, 1967.

    Google Scholar 

  44. Slomianka, L. Blue Histology—Respiratory System, 2006. Available from www.lab.anhb.uwa.edu.au/mb140/.

  45. Tarran, R., B. Button, M. Picher, A. M. Paradiso, C. M. Ribeiro, E. R. Lazarowski, L. Zhang, P. L. Collins, R. J. Pickles, J. J. Fredberg, and R. C. Boucher. Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections. J. Biol. Chem. 280:35751–35755, 2005.

    Article  Google Scholar 

  46. van der Linden, P. J., A. F. de Goeij, G. A. Dunselman, H. W. Erkens, and J. L. Evers. Amniotic membrane as an in vitro model for endometrium-extracellular matrix interactions. Gynecol. Obstet. Invest. 45:7–11, 1998.

    Article  Google Scholar 

  47. Vemuganti, G. K., S. Kashyap, V. S. Sangwan, and S. Singh. Ex-vivo potential of cadaveric and fresh limbal tissues to regenerate cultured epithelium. Indian J. Ophthalmol. 52:113–120, 2004.

    Google Scholar 

  48. Venaille, T. J., A. H. Mendis, A. Warton, L. Walker, J. M. Papadimitriou, and B. W. Robinson. Study of human epithelial cell detachment and damage: development of a model. Immunol. Cell Biol. 67:359–369, 1989.

    Article  Google Scholar 

  49. Werner, U., and T. Kissel. In vitro cell culture models of the nasal epithelium: a comparative histochemical investigation of their suitability for drug transport studies. Pharm. Res. 13:978–988, 1996.

    Article  Google Scholar 

  50. Whitcutt, M. J., K. B. Adler, and R. Wu. A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cell. Dev. Biol. 24:420–428, 1988.

    Article  Google Scholar 

  51. White, S. R., B. M. Fischer, B. A. Marroquin, and R. Stern. Interleukin-1β mediates human airway epithelial cell migration via NF-κB. Am. J. Physiol. Lung Cell. Mol. Physiol. 295:L1018–L1027, 2008.

    Article  Google Scholar 

  52. Wilshaw, S. P., J. N. Kearney, J. Fisher, and E. Ingham. Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng. 12:2117–2129, 2006.

    Article  Google Scholar 

  53. Wu, R., M. Zhao, and M. M. Chang. Growth and differentiation of conducting airway epithelial cells in culture. Eur. Respir. J. 10:2398–2403, 1997.

    Article  Google Scholar 

  54. Yoon, J. H., H. J. Moon, J. K. Seong, C. H. Kim, J. J. Lee, J. Y. Choi, M. S. Song, and S. H. Kim. Mucociliary differentiation according to time in human nasal epithelial cell culture. Differentiation 70:77–83, 2002.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Scott Randell and Prof. C. William Davis from The University of North Carolina at Chapel Hill, NC, USA, for the useful advice regarding nasal epithelial cell culture and mucin quantification assays. We would also like to thank Dr. Uri Zaretsky, Mrs. Dalit Shav and Mrs. Riki Levkovitz from the Department of Biomedical Engineering in Tel Aviv University for their valuable input to this project. This work was partially supported by a grant from the Ela Kodesz Institute for Biomedical Engineering and Medical Physics at Tel Aviv University, by a generous donation from the Australian Friends of Tel Aviv University (Vic) and by the Berman Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurit Even-Tzur.

Additional information

Associate Editor David Odde oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Even-Tzur, N., Jaffa, A., Gordon, Z. et al. Air–Liquid Interface Culture of Nasal Epithelial Cells on Denuded Amniotic Membranes. Cel. Mol. Bioeng. 3, 307–318 (2010). https://doi.org/10.1007/s12195-010-0118-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-010-0118-y

Keywords

Navigation