Skip to main content
Log in

Palmitic acid induces human osteoblast-like Saos-2 cell apoptosis via endoplasmic reticulum stress and autophagy

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Palmitic acid (PA) is the most common saturated long-chain fatty acid in food that causes cell apoptosis. However, little is known about the molecular mechanisms of PA toxicity. In this study, we explore the effects of PA on proliferation and apoptosis in human osteoblast-like Saos-2 cells and uncover the signaling pathways involved in the process. Our study showed that endoplasmic reticulum (ER) stress and autophagy are involved in PA-induced Saos-2 cell apoptosis. We found that PA inhibited the viability of Saos-2 cells in a dose- and time-dependent manner. At the same time, PA induced the expression of ER stress marker genes (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)), altered autophagy-related gene expression (microtubule-associated protein 1 light chain 3 (LC3), ATG5, p62, and Beclin), promoted apoptosis-related gene expression (Caspase 3 and BAX), and affected autophagic flux. Inhibiting ER stress with 4-PBA diminished the PA-induced cell apoptosis, activated autophagy, and increased the expression of Caspase 3 and BAX. Inhibiting autophagy with 3-MA attenuated the PA and ER stress-induced cell apoptosis and the apoptosis-related gene expression (Caspase 3 and BAX), but seemed to have no obvious effects on ER stress, although the CHOP expression was downregulated. Taken together, our results suggest that PA-induced Saos-2 cell apoptosis is activated via ER stress and autophagy, and the activation of autophagy depends on the ER stress during this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ben SI, Prola A, Boussabbeh M, Guilbert A, Bacha H, Abid-Essefi S, Lemaire C (2015) Crocin and quercetin protect HCT116 and HEK293 cells from Zearalenone-induced apoptosis by reducing endoplasmic reticulum stress. Cell Stress Chaperones 20:927–938

    Article  Google Scholar 

  • Cawley K, Deegan S, Samali A, Gupta S (2011) Assays for detecting the unfolded protein response. Methods Enzymol 490:31–51

    Article  CAS  Google Scholar 

  • Chamolstad H, Yu JE, Lee SH, Kim JG, Sung KS, Hwang J, Yoo YD, Lee YJ, Kim ST, Lee DH (2016) Modulation of SQSTM1/p62 activity by N-terminal arginylation of the endoplasmic reticulum chaperone HSPA5/GRP78/BiP. Autophagy 12:426–428

    Article  CAS  Google Scholar 

  • Chen YJ, Liu WH, Kao PH, Wang JJ, Chang LS (2010) Involvement of p38 MAPK- and JNK-modulated expression of Bcl-2 and Bax in Naja nigricollis CMS-9-induced apoptosis of human leukemia K562 cells. Toxicon 55:1306–1316

    Article  CAS  Google Scholar 

  • Chen F, Li Q, Zhang Z, Lin P, Lei L, Wang A, Jin Y (2015) Endoplasmic reticulum stress cooperates in zearalenone-induced cell death of RAW 264.7 macrophages. Int J Mol Sci 16:19780–19795

    Article  CAS  Google Scholar 

  • Chen F, Lin P, Wang N, Yang D, Wen X, Zhou D, Wang A, Jin Y (2016) Herp depletion inhibits zearalenone-induced cell death in RAW 264.7 macrophages. Toxicol in Vitro 32:115–122

    Article  Google Scholar 

  • Cunha DAD, Hekerman P, Ladriere L, Bazarracastro A, Ortis F, Wakeham MC, Moore F, Rasschaert J, Cardozo AK, Bellomo EA (2008) Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J Cell Sci 121:2308–2318

    Article  CAS  Google Scholar 

  • Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    Article  CAS  Google Scholar 

  • Feng D, Wang B, Wang L, Abraham N, Tao K, Huang L, Shi W, Dong Y, Qu Y (2017) Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting ER stress-dependent autophagy via PERK and IRE1 signalings. J Pineal Res 62:e12395

    Article  Google Scholar 

  • Gunn P (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349

    Article  Google Scholar 

  • Gwak H, Kim S, Dhanasekaran DN, Song YS (2016) Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells. Cancer Lett 371:347–353

    Article  CAS  Google Scholar 

  • Han J, Wang Y (2017) mTORC1 signaling in hepatic lipid metabolism. Protein Cell 1–7

  • He Y, Zhou L, Fan Z, Liu S, Fang W (2018) Palmitic acid, but not high-glucose, induced myocardial apoptosis is alleviated by N-acetylcysteine due to attenuated mitochondrial-derived ROS accumulation-induced endoplasmic reticulum stress. Cell Death Dis 9:568

    Article  Google Scholar 

  • Hino S, Kondo S, Yoshinaga K, Saito A, Murakami T, Kanemoto S, Sekiya H, Chihara K, Aikawa Y, Hara H (2010) Regulation of ER molecular chaperone prevents bone loss in a murine model for osteoporosis. J Bone Miner Metab 28:131–138

    Article  CAS  Google Scholar 

  • Hsiao YH, Lin CI, Liao H, Chen YH, Lin SH (2014) Palmitic acid-induced neuron cell cycle G2/M arrest and endoplasmic reticular stress through protein palmitoylation in SH-SY5Y human neuroblastoma cells. Int J Mol Sci 15:20876–20899

    Article  CAS  Google Scholar 

  • Hsu HC, Li SJ, Chen CY, Chen MF (2017) Eicosapentaenoic acid protects cardiomyoblasts from lipotoxicity in an autophagy-dependent manner. Cell Biol Toxicol 1–13

  • Huang Z, Wu S, Kong F, Cai X, Ye B, Shan P, Huang W (2017) MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway. J Cell Mol Med 21:467–474

    Article  CAS  Google Scholar 

  • Jaishy B, Abel ED (2016) Lipids, lysosomes and autophagy. J Lipid Res 57:1619–1635

    Article  CAS  Google Scholar 

  • Jiang H, Liang C, Liu X, Jiang Q, He Z, Wu J, Pan X, Ren Y, Fan M, Li M (2010) Palmitic acid promotes endothelial progenitor cell apoptosis via p38 and JNK mitogen-activated protein kinase pathways. Atherosclerosis 210:71–77

    Article  CAS  Google Scholar 

  • Jiang X, Chen X, Wan J, Gui H, Ruan X, Du X (2017) Autophagy protects against palmitic acid-induced apoptosis in podocytes in vitro. Sci Rep 7:42764

    Article  CAS  Google Scholar 

  • Katsoulieris E, Mabley JG, Samai M, Green IC, Chatterjee PK (2009) Alpha-linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress. Eur J Pharmacol 623:107–112

    Article  CAS  Google Scholar 

  • Lakhani SA, Masud A, Kuida K, Jr PG, Booth CJ, Mehal WZ, Inayat I, Flavell RA (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851

    Article  CAS  Google Scholar 

  • Las G, Shirihai OS (2010) The role of autophagy in β-cell lipotoxicity and type 2 diabetes. Diabetes Obes Metab 12:15–19

    Article  CAS  Google Scholar 

  • Leroy C, Tricot S, Lacour B, Grynberg A (2008) Protective effect of eicosapentaenoic acid on palmitate-induced apoptosis in neonatal cardiomyocytes. BBA-Biomembranes 1781:685–693

    CAS  PubMed  Google Scholar 

  • Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    Article  CAS  Google Scholar 

  • Li S, Li J, Shen C, Zhang X, Sun S, Cho M, Sun C, Song Z (2014) Tert-butylhydroquinone (tBHQ) protects hepatocytes against lipotoxicity via inducing autophagy independently of Nrf2 activation. BBA-Biomembranes 1841:22–33

    CAS  PubMed  Google Scholar 

  • Li J, Yang S, Li X, Liu D, Wang Z, Guo J, Tan N, Gao Z, Zhao X, Zhang J (2017) Role of endoplasmic reticulum stress in disuse osteoporosis. Bone 97:2–14

    Article  CAS  Google Scholar 

  • Liang Q, Kobayashi S (2016) Mitochondrial quality control in the diabetic heart. J Mol Cell Cardiol 95:57–69

    Article  CAS  Google Scholar 

  • Lin P, Yang Y, Li X, Chen F, Cui C, Hu L, Li Q, Liu W, Jin Y (2012) Endoplasmic reticulum stress is involved in granulosa cell apoptosis during follicular atresia in goat ovaries. Mol Reprod Dev 79:423–432

    Article  CAS  Google Scholar 

  • Lin P, Chen F, Sun J, Zhou J, Wang X, Wang N, Li X, Zhang Z, Wang A, Jin Y (2015) Mycotoxin zearalenone induces apoptosis in mouse Leydig cells via an endoplasmic reticulum stress-dependent signalling pathway. Reprod Toxicol 52:71–77

    Article  CAS  Google Scholar 

  • Lisse TS, Thiele F, Fuchs H, Hans W, Przemeck GKH, Abe K, Rathkolb B, Quintanillamartinez L, Hoelzlwimmer G, Helfrich M (2008) ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta. PLoS Genet 4:e7

    Article  Google Scholar 

  • Liu Y, Levine B (2015) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22:367–376

    Article  CAS  Google Scholar 

  • Lu J, Wang Q, Huang L, Dong H, Lin L, Lin N, Zheng F, Tan J (2012) Palmitate causes endoplasmic reticulum stress and apoptosis in human mesenchymal stem cells: prevention by AMPK activator. Endocrinology 153:5275–5284

    Article  CAS  Google Scholar 

  • Ma Y, Shimizu Y, Mann MJ, Jin Y, Hendershot LM (2010) Plasma cell differentiation initiates a limited ER stress response by specifically suppressing the PERK-dependent branch of the unfolded protein response. Cell Stress Chaperones 15:281–293

    Article  CAS  Google Scholar 

  • Ma XH, Piao SF, Dey S, Mcafee Q, Karakousis G, Villanueva J, Hart LS, Levi S, Hu J, Zhang G (2014) Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest 124:1406–1417

    Article  CAS  Google Scholar 

  • Maeyashiki C, Oshima S, Otsubo K, Kobayashi M, Nibe Y, Matsuzawa Y, Onizawa M, Nemoto Y, Nagaishi T, Okamoto R (2017) HADHA, the alpha subunit of the mitochondrial trifunctional protein, is involved in long-chain fatty acid-induced autophagy in intestinal epithelial cells. Biochem Bioph Res Commun 484:636–641

    Article  CAS  Google Scholar 

  • Martinez SC, Tanabe K, Cras-Méneur C, Abumrad NA, Bernal-Mizrachi E, Permutt MA (2008) Inhibition of Foxo1 protects pancreatic islet beta-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes 57:846–859

    Article  CAS  Google Scholar 

  • Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922

    Article  CAS  Google Scholar 

  • Mei S, Ni H, Manley S, Bockus A, Kassel KM, Luyendyk JP, Copple BL, Ding W (2011) Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J Pharmacol Exp Ther 339:487–498

    Article  CAS  Google Scholar 

  • Momoi T (2006) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14:230–239

    PubMed  Google Scholar 

  • Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, Mukasa C, Okabe T, Nomura M, Goto K (2001) Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology 142:3590–3597

    Article  CAS  Google Scholar 

  • Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  CAS  Google Scholar 

  • Qaisiya M, Brischetto C, Jašprová J, Vitek L, Tiribelli C, Bellarosa C (2016) Bilirubin-induced ER stress contributes to the inflammatory response and apoptosis in neuronal cells. Arch Toxicol 91:1–12

    Google Scholar 

  • Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885

    Article  CAS  Google Scholar 

  • Szpigel A, Hainault I, Carlier A, Venteclef N, Batto AF, Hajduch E, Bernard C, Ktorza A, Gautier JF, Ferré P (2018) Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia 61:399–412

    Article  CAS  Google Scholar 

  • Tan SH, Shui G, Zhou J, Li JJ, Bay BH, Wenk MR, Shen HM (2012) Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (mammalian target of rapamycin). J Biol Chem 287:14364–14376

    Article  CAS  Google Scholar 

  • Tu QQ, Zheng RY, Li J, Hu L, Chang YX, Li L, Li MH, Wang RY, Huang DD, Wu MC (2014) Palmitic acid induces autophagy in hepatocytes via JNK2 activation. Acta Pharmacol Sin 35:504–512

    Article  CAS  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  Google Scholar 

  • Wang X, Lin P, Yin Y, Zhou J, Lei L, Zhou X, Jin Y, Wang A (2015) Brucella suis vaccine strain S2-infected immortalized caprine endometrial epithelial cell lines induce non-apoptotic ER-stress. Cell Stress Chaperones 20:399–409

    Article  Google Scholar 

  • Wang X, Lin P, Li Y, Xiang C, Yin Y, Chen Z, Du Y, Zhou D, Jin Y, Wang A (2016) Brucella suis vaccine strain 2 induces endoplasmic reticulum stress that affects intracellular replication in goat trophoblast cells in vitro. Front Cell Infect Microbiol 6:19

    PubMed  PubMed Central  Google Scholar 

  • Wen H, Wu Z, Hu H, Wu Y, Yang G, Lu J, Yang G, Guo G, Dong Q (2017) The anti-tumor effect of pachymic acid on osteosarcoma cells by inducing PTEN and Caspase 3/7-dependent apoptosis. J Nat Med 72:1–7

    Google Scholar 

  • Xia X, Kar R, Gluhakheinrich J, Yao W, Lane NE, Bonewald LF, Biswas SK, Lo W, Jiang JX (2010) Glucocorticoid-induced autophagy in osteocytes. J Bone Miner Res 25:2479–2488

    Article  CAS  Google Scholar 

  • Yamada H, Nakajima T, Domon H, Honda T, Yamazaki K (2015) Endoplasmic reticulum stress response and bone loss in experimental periodontitis in mice. J Periodontal Res 50:500–508

    Article  CAS  Google Scholar 

  • Yang Y, Cheung HH, Tu J, Miu KK, Chan W (2016a) New insights into the unfolded protein response in stem cells. Oncotarget 7:54010–54027

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Pei X, Jin Y, Wang Y, Zhang C (2016b) The roles of endoplasmic reticulum stress response in female mammalian reproduction. Cell Tissue Res 363:589–597

    Article  CAS  Google Scholar 

  • Yong Z, Xue R, Zhang Z, Xia Y, Shi H (2012) Palmitic and linoleic acids induce ER stress and apoptosis in hepatoma cells. Lipids Health Dis 11:1

    Article  Google Scholar 

  • Zeng M, Sang W, Chen S, Chen R, Zhang H, Xue F, Li Z, Liu Y, Gong Y, Zhang H (2017) 4-PBA inhibits LPS-induced inflammation through regulating ER stress and autophagy in acute lung injury models. Toxicol Lett 271:26–37

    Article  CAS  Google Scholar 

  • Zhang Y, Yang X, Shi H, Dong L, Bai J (2011) Effect of α-linolenic acid on endoplasmic reticulum stress-mediated apoptosis of palmitic acid lipotoxicity in primary rat hepatocytes. Lipids Health Dis 10:122

    Article  CAS  Google Scholar 

  • Zhang W, Meng H, Yang R, Yang M, Sun G, Liu J, Shi P, Liu F, Yang B (2016) Melatonin suppresses autophagy in type 2 diabetic osteoporosis. Oncotarget 7:52179–52194

    PubMed  PubMed Central  Google Scholar 

  • Zhao L, Jiang H, Papasian CJ, Maulik D, Drees BM, Hamilton JJ, Deng H (2007a) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23:17–29

    Article  Google Scholar 

  • Zhao L, Liu Y, Liu P, Hamilton JJ, Recker RR, Deng H (2007b) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92:1640–1646

    Article  CAS  Google Scholar 

  • Zheng YZ, Cao ZG, Hu X, Shao ZM (2014) The endoplasmic reticulum stress markers GRP78 and CHOP predict disease-free survival and responsiveness to chemotherapy in breast cancer. Breast Cancer Res Treat 145:349–358

    Article  CAS  Google Scholar 

  • Zhu Q, Yang J, Zhu R, Jiang X, Li W, He S, Jin J (2016) Dihydroceramide-desaturase-1-mediated caspase 9 activation through ceramide plays a pivotal role in palmitic acid-induced HepG2 cell apoptosis. Apoptosis 21:1033–1044

    Article  CAS  Google Scholar 

Download references

Funding

This research study was funded by the National Natural Science Foundation of China (No. 81660152) and Doctoral Research Start-Up Foundation of Jiujiang University (No. 8879522).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Yang or Xiang Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Table 1

(DOCX 16 kb)

Fig. S1

The morphology of Saos-2 cells after treatment with different doses of PA (0–800 μM) for 24 h. (PNG 18533 kb)

High resolution image (TIF 26708 kb)

Fig. S2

Effects of PA on ER Stress, autophagy, and apoptosis related protein expression. (A) The expression of GRP78 and CHOP in Saos-2 cells after treatment with different doses of PA (0–800 μM) for 24 h; (B) The expression of GRP78 and CHOP after treatment with 200 μM PA for different times (0–48 h); (C) The expression of Beclin1, LC3, ATG5 and p62 in Saos-2 cells after treatment with different doses of PA (0–800 μM) for 24 h; (D) The expression of Beclin1, LC3, ATG5 and p62 after treatment with 200 μM PA for different times (0–48 h); (E) The expression of BAX in Saos-2 cells after treatment with different dose of PA (0–800 μM) for 24 h; (F) The expression of BAX after treatment with 200 μM PA for different times (0–48 h). (PNG 395 kb)

High resolution image (TIF 810 kb)

Fig. S3

The related protein expression of ER Stress, autophagy, and apoptosis in different treatment groups. (A) Effect of 4-PBA in PA-treated Saos-2 cells; (B) Effect of 3-MA in PA-treated Saos-2 cells; (C) Effect of 3-MA in TG-treated Saos-2 cells. (PNG 1311 kb)

High resolution image (TIF 3263 kb)

Fig. S4

Amplified Fig. 5D. (PNG 2133 kb)

High resolution image (TIF 2977 kb)

Fig. S5

Amplified Fig. 6D. (PNG 1843 kb)

High resolution image (TIF 2699 kb)

Fig. S6

Amplified Fig. 7D. (PNG 4088 kb)

High resolution image (TIF 7559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Guan, G., Lei, L. et al. Palmitic acid induces human osteoblast-like Saos-2 cell apoptosis via endoplasmic reticulum stress and autophagy. Cell Stress and Chaperones 23, 1283–1294 (2018). https://doi.org/10.1007/s12192-018-0936-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-018-0936-8

Keywords

Navigation