Skip to main content
Log in

Dihydroceramide-desaturase-1-mediated caspase 9 activation through ceramide plays a pivotal role in palmitic acid-induced HepG2 cell apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In this study, results showed that the inhibition of PA-induced HepG2 cell growth takes place in a time- and concentration-dependent manner, that activation of caspase 9 is necessary for PA-induced HepG2 cell apoptosis, that dihydroceramide desaturase 1 (DES1) plays a key role in PA-mediated caspase 9 and caspase 3 activation, and that palmitoleic acid (POA), an omega-7 monounsaturated fatty acid, reverses PA-induced apoptosis through DES1 → Ceramide → Caspase 9 → Caspase 3 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hu W, Ross J, Geng T, Brice SE, Cowart LA (2011) Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: implications for insulin resistance. J Biol Chem 286:16596–16605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Feldstein AE, Canbay A, Guicciardi ME, Higuchi H, Bronk SF, Gores GJ (2003) Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice. J Hepatol 39:978–983

    Article  CAS  PubMed  Google Scholar 

  3. Unger RH (2003) Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 144:5159–5165

    Article  CAS  PubMed  Google Scholar 

  4. Summers SA (2006) Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 45:42–72

    Article  CAS  PubMed  Google Scholar 

  5. Kitatani K, Sheldon K, Anelli V et al (2009) Acid beta-glucosidase 1 counteracts p38delta-dependent induction of interleukin-6: possible role for ceramide as an anti-inflammatory lipid. J Biol Chem 284:12979–12988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taha TA, Hannun YA, Obeid LM (2006) Sphingosine kinase: biochemical and cellular regulation and role in disease. J Biochem Mol Biol 39:113–131

    Article  CAS  PubMed  Google Scholar 

  7. Hannun YA (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274:1855–1859

    Article  CAS  PubMed  Google Scholar 

  8. Ye J (2007) Role of insulin in the pathogenesis of free fatty acid-induced insulin resistance in skeletal muscle. Endocr Metab Immune Disord Drug Targets 7:65–74

    Article  CAS  PubMed  Google Scholar 

  9. Listenberger LL, Ory DS, Schaffer JE (2001) Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem 276:14890–14895

    Article  CAS  PubMed  Google Scholar 

  10. Shimabukuro M, Zhou YT, Levi M, Unger RH (1998) Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA 95:2498–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chou IP, Lin YY, Ding ST, Chen CY (2014) Adiponectin receptor 1 enhances fatty acid metabolism and cell survival in palmitate-treated HepG2 cells through the PI3 K/AKT pathway. Eur J Nutr 53:907–917

    Article  CAS  PubMed  Google Scholar 

  12. Tu QQ, Zheng RY, Li J et al (2014) Palmitic acid induces autophagy in hepatocytes via JNK2 activation. Acta Pharmacol Sin 35:504–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang D, Wei Y, Pagliassotti MJ (2006) Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 147:943–951

    Article  CAS  PubMed  Google Scholar 

  14. Wei Y, Wang D, Topczewski F, Pagliassotti MJ (2006) Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 291:E275–E281

    Article  CAS  PubMed  Google Scholar 

  15. Jin J, Zhang X, Lu Z et al (2013) Acid sphingomyelinase plays a key role in palmitic acid-amplified inflammatory signaling triggered by lipopolysaccharide at low concentrations in macrophages. Am J Physiol Endocrinol Metab 305:E853–E867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu Q, Kang J, Miao H et al (2014) Low-dose cytokine-induced neutral ceramidase secretion from INS-1 cells via exosomes and its anti-apoptotic effect. FEBS J 281:2861–2870

    Article  CAS  PubMed  Google Scholar 

  17. Jin J, Mullen TD, Hou Q et al (2009) AMPK inhibitor Compound C stimulates ceramide production and promotes Bax redistribution and apoptosis in MCF7 breast carcinoma cells. J Lipid Res 50:2389–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang Z, Huang G, Li Q, Jin J (2015) p38 mitogen-activated protein kinase/activator protein-1 involved in serum deprivation-induced human alkaline ceramidase 2 upregulation. Biomed Rep 3:225–229

    PubMed  Google Scholar 

  19. Spassieva SD, Rahmaniyan M, Bielawski J, Clarke CJ, Kraveka JM, Obeid LM (2012) Cell density-dependent reduction of dihydroceramide desaturase activity in neuroblastoma cells. J Lipid Res 53:918–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu R, Sun W, Jin J, Obeid LM, Mao C (2010) Role of alkaline ceramidases in the generation of sphingosine and its phosphate in erythrocytes. FASEB J 24:2507–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jin J, Hou Q, Mullen TD et al (2008) Ceramide generated by sphingomyelin hydrolysis and the salvage pathway is involved in hypoxia/reoxygenation-induced Bax redistribution to mitochondria in NT-2 cells. J Biol Chem 283:26509–26517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Breen P, Joseph N, Thompson K et al (2013) Dihydroceramide desaturase knockdown impacts sphingolipids and apoptosis after photodamage in human head and neck squamous carcinoma cells. Anticancer Res 33:77–84

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodriguez-Cuenca S, Barbarroja N, Vidal-Puig A (2015) Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. Biochim Biophys Acta 1851:40–50

    Article  CAS  PubMed  Google Scholar 

  24. Nemcova-Furstova V, James RF, Kovar J (2011) Inhibitory effect of unsaturated fatty acids on saturated fatty acid-induced apoptosis in human pancreatic beta-cells: activation of caspases and ER stress induction. Cell Physiol Biochem 27:525–538

    Article  PubMed  Google Scholar 

  25. Fu M, Li Z, Tan T et al (2015) Akt/eNOS signaling pathway mediates inhibition of endothelial progenitor cells by palmitate-induced ceramide. Am J Physiol Heart Circ Physiol 308:H11–H17

    Article  CAS  PubMed  Google Scholar 

  26. Schilling JD, Machkovech HM, He L et al (2013) Palmitate and lipopolysaccharide trigger synergistic ceramide production in primary macrophages. J Biol Chem 288:2923–2932

    Article  CAS  PubMed  Google Scholar 

  27. MohammadTaghvaei N, Taheripak G, Taghikhani M, Meshkani R (2012) Palmitate-induced PTP1B expression is mediated by ceramide-JNK and nuclear factor kappaB (NF-kappaB) activation. Cell Signal 24:1964–1970

    Article  PubMed  Google Scholar 

  28. Martinez L, Torres S, Baulies A et al (2015) Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis. Oncotarget 6:41479–41496

    PubMed  PubMed Central  Google Scholar 

  29. Nehra V, Angulo P, Buchman AL, Lindor KD (2001) Nutritional and metabolic considerations in the etiology of nonalcoholic steatohepatitis. Dig Dis Sci 46:2347–2352

    Article  CAS  PubMed  Google Scholar 

  30. de Almeida IT, Cortez-Pinto H, Fidalgo G, Rodrigues D, Camilo ME (2002) Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis. Clin Nutr 21:219–223

    Article  PubMed  Google Scholar 

  31. Araya J, Rodrigo R, Videla LA et al (2004) Increase in long-chain polyunsaturated fatty acid n - 6/n - 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin Sci (Lond) 106:635–643

    Article  CAS  Google Scholar 

  32. Listenberger LL, Han X, Lewis SE et al (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100:3077–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamaguchi K, Yang L, McCall S et al (2007) Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45:1366–1374

    Article  CAS  PubMed  Google Scholar 

  34. Masuoka HC, Mott J, Bronk SF et al (2009) Mcl-1 degradation during hepatocyte lipoapoptosis. J Biol Chem 284:30039–30048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mei S, Ni HM, Manley S et al (2011) Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J Pharmacol Exp Ther 339:487–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boren J, Brindle KM (2012) Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ 19:1561–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Malhi H, Bronk SF, Werneburg NW, Gores GJ (2006) Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem 281:12093–12101

    Article  CAS  PubMed  Google Scholar 

  38. Hwang SY, Yu SJ, Lee JH, Kim HY, Kim YJ (2015) Reduction of oxidative stress attenuates lipoapoptosis exacerbated by hypoxia in human hepatocytes. Int J Mol Sci 16:3323–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei Y, Wang D, Pagliassotti MJ (2007) Saturated fatty acid-mediated endoplasmic reticulum stress and apoptosis are augmented by trans-10, cis-12-conjugated linoleic acid in liver cells. Mol Cell Biochem 303:105–113

    Article  CAS  PubMed  Google Scholar 

  40. Estadella D, da Penha Oller do Nascimento CM, Oyama LM, Ribeiro EB, Damaso AR, de Piano A (2013) Lipotoxicity: effects of dietary saturated and transfatty acids. Mediators Inflamm 2013:137579

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ravid T, Tsaba A, Gee P, Rasooly R, Medina EA, Goldkorn T (2003) Ceramide accumulation precedes caspase-3 activation during apoptosis of A549 human lung adenocarcinoma cells. Am J Physiol Lung Cell Mol Physiol 284:L1082–L1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hannun YA, Obeid LM (2002) The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 277:25847–25850

    Article  CAS  PubMed  Google Scholar 

  43. Pettus BJ, Chalfant CE, Hannun YA (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585:114–125

    Article  CAS  PubMed  Google Scholar 

  44. Peralta ER, Edinger AL (2009) Ceramide-induced starvation triggers homeostatic autophagy. Autophagy 5:407–409

    Article  CAS  PubMed  Google Scholar 

  45. Guenther GG, Peralta ER, Rosales KR, Wong SY, Siskind LJ, Edinger AL (2008) Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc Natl Acad Sci USA 105:17402–17407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dyntar D, Eppenberger-Eberhardt M, Maedler K et al (2001) Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes 50:2105–2113

    Article  CAS  PubMed  Google Scholar 

  47. Sawada M, Nakashima S, Banno Y et al (2000) Ordering of ceramide formation, caspase activation, and Bax/Bcl-2 expression during etoposide-induced apoptosis in C6 glioma cells. Cell Death Differ 7:761–772

    Article  CAS  PubMed  Google Scholar 

  48. Kolesnick R, Golde DW (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77:325–328

    Article  CAS  PubMed  Google Scholar 

  49. Susin SA, Zamzami N, Castedo M et al (1997) The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis. J Exp Med 186:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wiesner DA, Kilkus JP, Gottschalk AR, Quintans J, Dawson G (1997) Anti-immunoglobulin-induced apoptosis in WEHI 231 cells involves the slow formation of ceramide from sphingomyelin and is blocked by bcl-XL. J Biol Chem 272:9868–9876

    Article  CAS  PubMed  Google Scholar 

  51. Siddique MM, Bikman BT, Wang L et al (2012) Ablation of dihydroceramide desaturase confers resistance to etoposide-induced apoptosis in vitro. PLoS ONE 7:e44042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Siddique MM, Li Y, Wang L et al (2013) Ablation of dihydroceramide desaturase 1, a therapeutic target for the treatment of metabolic diseases, simultaneously stimulates anabolic and catabolic signaling. Mol Cell Biol 33:2353–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zheng W, Kollmeyer J, Symolon H et al (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta 1758:1864–1884

    Article  CAS  PubMed  Google Scholar 

  54. Hardy S, El-Assaad W, Przybytkowski E, Joly E, Prentki M, Langelier Y (2003) Saturated fatty acid-induced apoptosis in MDA-MB-231 breast cancer cells. A role for cardiolipin. J Biol Chem 278:31861–31870

    Article  CAS  PubMed  Google Scholar 

  55. Hung YH, Chan YS, Chang YS et al (2014) Fatty acid metabolic enzyme acyl-CoA thioesterase 8 promotes the development of hepatocellular carcinoma. Oncol Rep 31:2797–2803

    CAS  PubMed  Google Scholar 

  56. Hagen RM, Rhodes A, Ladomery MR (2013) Conjugated linoleate reduces prostate cancer viability whereas the effects of oleate and stearate are cell line-dependent. Anticancer Res 33:4395–4400

    CAS  PubMed  Google Scholar 

  57. Trimboli AJ, Waite BM, Atsumi G et al (1999) Influence of coenzyme A-independent transacylase and cyclooxygenase inhibitors on the proliferation of breast cancer cells. Cancer Res 59:6171–6177

    CAS  PubMed  Google Scholar 

  58. Chan TA, Morin PJ, Vogelstein B, Kinzler KW (1998) Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis. Proc Natl Acad Sci USA 95:681–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blask DE, Sauer LA, Dauchy RT, Holowachuk EW, Ruhoff MS, Kopff HS (1999) Melatonin inhibition of cancer growth in vivo involves suppression of tumor fatty acid metabolism via melatonin receptor-mediated signal transduction events. Cancer Res 59:4693–4701

    CAS  PubMed  Google Scholar 

  60. Hardy S, Langelier Y, Prentki M (2000) Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Res 60:6353–6358

    CAS  PubMed  Google Scholar 

  61. Kato T, Hancock RL, Mohammadpour H et al (2002) Influence of omega-3 fatty acids on the growth of human colon carcinoma in nude mice. Cancer Lett 187:169–177

    Article  CAS  PubMed  Google Scholar 

  62. Schonberg SA, Lundemo AG, Fladvad T et al (2006) Closely related colon cancer cell lines display different sensitivity to polyunsaturated fatty acids, accumulate different lipid classes and downregulate sterol regulatory element-binding protein 1. FEBS J 273:2749–2765

    Article  PubMed  Google Scholar 

  63. Shaikh IA, Brown I, Schofield AC, Wahle KW, Heys SD (2008) Docosahexaenoic acid enhances the efficacy of docetaxel in prostate cancer cells by modulation of apoptosis: the role of genes associated with the NF-kappaB pathway. Prostate 68:1635–1646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported in part by the National Natural Science Foundation of China (No. 81360309, 81572738, and 81270898), the Natural Science Foundation of Guangxi (No. 2014GXNSFAA118194, 2015GXNSFEA139003), the Medical Health Appropriate Technology Research and Development Project from the Health and Family Planning Commission in Guangxi (No. S201407-06), the Scientific Research and Technology Development Project of Guilin (No. 20140310-2-1), “Sphingolipids and Related Diseases” Program for Innovative Research Team of Guilin Medical University, and Hundred Talents Program under the Introduction of Overseas High-Level Talents in Colleges and Universities in Guangxi. This research was also supported by Guangxi Distinguished Experts Special Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songqing He or Junfei Jin.

Additional information

Q. Zhu and J. Yang authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Yang, J., Zhu, R. et al. Dihydroceramide-desaturase-1-mediated caspase 9 activation through ceramide plays a pivotal role in palmitic acid-induced HepG2 cell apoptosis. Apoptosis 21, 1033–1044 (2016). https://doi.org/10.1007/s10495-016-1267-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1267-9

Keywords

Navigation