Skip to main content
Log in

Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Acute fluoride (F) toxicity is known to cause severe cardiac complications and leads to sudden heart failure. Previously, we reported that increased myocardial oxidative damage, apoptosis, altered cytoskeleton and AMPK signaling proteins associated with energy deprivation in acute F induced cardiac dysfunction. The present study was aimed to decipher the status of myocardial heat shock proteins (Hsps-Hsp27, Hsp32, Hsp40, Hsp60, Hsp70, Hsp90) and heat shock transcription factor 1 (Hsf1) in acute F-intoxicated rats. In order to study the expression of myocardial Hsps, male Wistar rats were treated with single oral doses of 45 and 90 mg/kg F for 24 h. The expression levels of myocardial Hsps were determined using RT-PCR, western blotting, and immunohistochemical studies. Acute F-intoxicated rats showed elevated levels of both the transcripts and protein expression of Hsf1, Hsp27, Hsp32, Hsp60, and Hsp70 when compared to control. In addition, the expression levels of Hsp40 and Hsp90 were significantly declined in a dose-dependent fashion in F-treated animals. Our result suggests that differential expression of Hsps in the rat myocardium could serve as a balance between pro-survival and death signal during acute F-induced heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Hsps:

Heat shock proteins

Hsf1:

Heat shock factor 1

DAB:

3,3′-Diaminobenzidine

TMB:

3,3′,5,5′-Tetramethylbenzidine

References

  • Ameeramja J, Panneerselvam L, Govindarajan V, Jeyachandran S, Baskaralingam V, Perumal E (2016) Tamarind seed coat ameliorates fluoride induced cytotoxicity, oxidative stress, mitochondrial dysfunction and apoptosis in A549 cells. J Hazar Mat 301:554–565

  • Ameeramja J, Perumal E (2016) Protocatechuic acid methyl ester ameliorates fluoride toxicity in A549 cells. Food Chem Toxicol. doi:10.1016/j.fct.2016.12.024

  • Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C (2005) Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 7:414–422

    Article  CAS  PubMed  Google Scholar 

  • ATSDR (2003) Agency for Toxic Substances and Disease Registry TP-91/17 ATSDR, toxicological profile for fluorides, hydrogen fluoride, and fluorine. Department of Health and Human Services, Atlanta

    Google Scholar 

  • Bouaziz H, Croute F, Boudawara T, Soleilhavoup JP, Zeghala N (2007) Oxidative stress induced by fluoride in adult mice and their suckling pups Exp. Toxicol Path 58:339–349

    Article  CAS  Google Scholar 

  • Brown IR, Rush SJ (1984) Induction of a “stress” protein in intact mammalian organs after the intravenous administration of sodium arsenite. Biochem Biophys Res Commun 120:150–155

    Article  CAS  PubMed  Google Scholar 

  • Cattelan A, Ceolotto G, Bova S, Albiero M, Kuppusamy M, De Martin S, Semplicini A, Fadini GP, de Kreutzenberg SV, Avogaro A (2015) NAD(+)-dependent SIRT1 deactivation has a key role on ischemia-reperfusion-induced apoptosis. Vasc Pharmacol 70:35–44

    Article  CAS  Google Scholar 

  • Chattopadhyay A, Podder S, Agarwal S, Bhattacharya S (2011) Fluoride-induced histopathology and synthesis of stress protein in liver and kidney of mice. Arch Toxicol 85:327–335

    Article  CAS  PubMed  Google Scholar 

  • Choi HI, Lee SP, Kim KS, Hwang CY, Lee YR, Chae SK, Kim YS, Chae HZ, Kwon KS (2006) Redox-regulated co-chaperone activity of the human DnaJ homolog Hdj2. Free Radic Biol Med 40:651–659

    Article  CAS  PubMed  Google Scholar 

  • Christians ES, Yan LJ, Benjamin IJ (2002) Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury. Crit Care 30:S43–S50

    Article  CAS  Google Scholar 

  • EHC (2002) Environment health criteria 227, fluorides. World Health Organization, WHO, Geneva

    Google Scholar 

  • Ewing JF, Maines MD (1993) Glutathione depletion induces heme oxygenase- 1 (HSP32) mRNA and protein in rat brain. J Neurochem 60:1512–1519

    Article  CAS  PubMed  Google Scholar 

  • Gessner BD, Beller M, Middaugh JP, Whitford GM (1994) Acute fluoride poisoning from a public water system. N Engl J Med 330:95–99

    Article  CAS  PubMed  Google Scholar 

  • Ghayour-Mobarhan M, Saber H, Ferns GA (2012) The potential role of heat shock protein 27 in cardiovascular disease. Clin Chim Acta 413:15–24

    Article  CAS  PubMed  Google Scholar 

  • Hart FU, Bracher A, Hayer-Hart M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  Google Scholar 

  • Hayashi M, Imanaka-Yoshida K, Yoshida T, Wood M, Fearns C, Tatake RJ, Lee JD (2006) A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nat Med 12:128–132

    Article  CAS  PubMed  Google Scholar 

  • Jeckel KM, Bouma GJ, Hess AM, Petrilli EB, Frye MA (2014) Dietary fatty acids alter left ventricular myocardial gene expression in Wistar rats. Nutr Res 34:694–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenei ZM, Gombos T, Forhecz Z, Pozsonyi Z, Karádi I, Jánoskuti L, Prohászka Z (2013) Elevated extracellular HSP70 (HSPA1A) level as an independent prognostic marker of mortality in patients with heart failure. Cell Stress Chaperones 18:809–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61:310–318

    Article  CAS  PubMed  Google Scholar 

  • Kanagaraj VV, Panneerselvam L, Govindarajan V, Ameeramja J (2015) Caffeic acid, a phyto polyphenol mitigates fluoride induced hepatotoxicity in rats: a possible mechanism. Biofactors 41:90–100

    Article  CAS  PubMed  Google Scholar 

  • Knowlton AA, Sun L (2001) Heat-shock factor-1, steroid hormones, and regulation of heat-shock protein expression in the heart. Am J Physiol Heart Circ Physiol 28:455–464

    Google Scholar 

  • Kumar A (2009) Fatality due to sodium fluoride ingestion—suicide or accident? Can Soc Forensic Sci J 42:69–74

    Article  CAS  Google Scholar 

  • Lech T (2011) Fatal cases of acute suicidal sodium and accidental zinc fluorosilicate poisoning. Review of acute intoxications due to fluoride compounds. Forensic Sci Int 206:20–24

    Article  Google Scholar 

  • Lee JH, Gao J, Kosinski PA, Elliman SJ, Hughes TE, Gromada J, Kemp DM (2013) Heat shock protein 90 (HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose regulation in diabetic mice. Biochem Biophys Res Commun 430:1109–1113

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Kim SC, Wang Y, Gupta S, Davis B, Simon SI, Torre-Amione G, Knowlton AA (2007) HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 293:H2238–H2247

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud-Awny M, Attia AS, Abd-Ellah MF, El-Abhar HS (2015) Mangiferin mitigates gastric ulcer in ischemia/repefused rats: involvement of PPAR-1, NF-kB and Nrf2/HO-1 signaling pathways. PLoS One 10:e0132497

    Article  PubMed  PubMed Central  Google Scholar 

  • Max D, Brandsch C, Schumann S, Kuhne H, Frommhagen M, Schutkowski A, Hirche F, Staege MS, Stangl GI (2014) Maternal vitamin D deficiency causes smaller muscle fibers and altered transcript levels of genes involved in protein degradation, myogenesis, and cytoskeleton organization in the newborn rat. Mol Nutr Food Res 58:343–352

    Article  CAS  PubMed  Google Scholar 

  • McIvor ME, Cummings CE, Mower MM, Wenk RE, Lustgarten JA, Baltazar RF, Salomon J (1987) Sudden cardiac death from acute fluoride intoxication: the role of potassium. Ann Emerg Med 16:777–781

    Article  CAS  PubMed  Google Scholar 

  • McNicol AM, Richmond JA (1998) Optimizing immunohistochemistry: antigen retrieval and signal amplification. Histopathology 32:97–103

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa J, Nakai A, Matsuda K, Komeda M, Ban T, Nagata K (1999) Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation 99:934–941

    Article  CAS  PubMed  Google Scholar 

  • Novo G, Cappello F, Rizzo M, Fazio G, Zambuto S, Tortorici E et al (2011) Hsp60 and heme oxygenase-1 (Hsp32) in acute myocardial infarction. Transl Res 157:285–292

    Article  CAS  PubMed  Google Scholar 

  • Oyagbemi AA, Omobowale TO, Asenuga ER, Adejumobi AO, Ajibade TO, Ige TM, Ogunpolu BS, Adedapo AA, Yakubu MA (2016) Sodium fluoride induces hypertension and cardiac complications through generation of reactive oxygen species and activation of nuclear factor kappa beta. Environ Toxicol. doi:10.1002/tox.22306

    PubMed  Google Scholar 

  • Pacauskiene I, Kopustinskiene D, Paipaliene PP, Sadzeviciene R (2009) Effect of fluoride on the respiration rate of rat cardiac mitochondria. Fluoride 42:198–202

    CAS  Google Scholar 

  • Panneerselvam L, Govindarajan V, Ameeramja J, Nair HR, Perumal E (2015) Single oral acute fluoride exposure causes changes in cardiac expression of oxidant and antioxidant enzymes, apoptotic and necrotic markers in male rats. Biochimie 119:27–35

    Article  CAS  PubMed  Google Scholar 

  • Panneerselvam L, Raghunath A, Perumal E (2017) Acute fluoride poisoning alters myocardial cytoskeleton and AMPK signaling proteins in rats. Int J Cardiol 229:96–101

    Article  PubMed  Google Scholar 

  • Penman AD, Brackin BT, Embrey R (1997) Outbreak of acute fluoride poisoning caused by a fluoride overfeed, Mississippi, 1993. Public Health Rep 112:403–409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prodromou C (2017) Regulatory mechanisms of Hsp90. Biochem Mol Biol J. doi:10.21767/2471-8084.100030

    PubMed  PubMed Central  Google Scholar 

  • Reddy VS, Kumar CHU, Raghu G, Reddy GB (2014) Expression and induction of small heat shock proteins in rat heart under chronic hyperglycemic conditions. Arch Biochem Biophys 558:1–9

    Article  CAS  PubMed  Google Scholar 

  • Sarangi U, Singh MK, Abhijnya KVV, Reddy LPA, Prasad BS, Pitke VV, Paithankar K, Sreedhar AS (2013) Hsp60 chaperonin acts as barrier to pharmacologically induced oxidative stress mediated apoptosis in tumor cells with differential stress response. Drug Target Insights 7:35–51

    PubMed  PubMed Central  Google Scholar 

  • Satoh M, Shimoda Y, Akatsu T, Ishikawa Y, Minami Y, Nakamura M (2006) Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte Toll signal in patients with heart failure after acute myocardial infarction. Eur J Heart Fail 8:810–815

    Article  CAS  PubMed  Google Scholar 

  • Shan YX, Liu TJ, Su HF, Samsamshariat A, Mestril R, Wang PH (2003) Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. Mol Cell Cardiol 35:1135–1143

    Article  CAS  Google Scholar 

  • Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497

    CAS  PubMed  Google Scholar 

  • Su M, Chu J, Howland MN, Nelson LS, Hoffman RS (2003) Amiodarone attenuates fluoride-induced hyperkalemia in vitro. Acad Emerg Med 10:105–109

    Article  PubMed  Google Scholar 

  • Sundarraj K, Raghunath A, Panneerselvam L, Perumal E (2017) Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs. Toxicol Appl Pharmacol 317:12–24

    Article  CAS  PubMed  Google Scholar 

  • Takase I, Kono K, Tamura A, Nishio H, Dote T, Suzuki K (2004) Fatality due to acute fluoride poisoning in the work place. Leg Med (Tokyo) 6:197–200

    Article  CAS  Google Scholar 

  • Vohra R, Velez LI, Rivera W, Benitez FL, Delaney KA (2008) Recurrent life threatening ventricular dysrhythmias associated with acute hydrofluoric acid ingestion: observations in one case and implications for mechanism of toxicity. Clin Toxicol 46(46):79–84

    Article  CAS  Google Scholar 

  • Whitford GM (1990) The physiological and toxicological characteristics of fluoride. J Dent Res 69:539–549

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Zhang B, Yang F, Cai C, Wang G, Han Q, Zou L (2015) HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy. Biochem Biophys Res Commun 460:622–627

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Yang X, Hao X, Ren Q, Gao J, Wang Y (2015) Sodium fluoride induces apoptosis in H9c2 cardiomyocytes by altering mitochondrial membrane potential and intracellular ROS level. Biol Trace Elem Res 166:210–215

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Liu M, Zhang L, Cao Q, Zhang P, Jiang H, Zou Y, Ge J (2012) Heat shock transcription factor 1 inhibits H2O2-induced cardiomyocyte death through suppression of high-mobility group box 1. Mol Cell Biochem 364:263–269

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Min X, Li C, Benjamin IJ, Qian B, Zhang X, Ding Z, Gao X, Yao Y, Ma Y, Cheng Y, Liu L (2010) Involvement of reductive stress in the cardiomyopathy in transgenic mice with cardiac-specific overexpression of heat shock protein 27. Hypertension 55:1412–1417

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to research fellows Ms. Kiruthika Sundarraj and Ms. Vinothini Subramaniam, Bharathiar University, Coimbatore, for their timely assistance throughout the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekambaram Perumal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding information

This work was supported by the UGC-SAP DRS II:F-3-30/2013 and DST-FIST:SR/FST/LSI-618/2014, New Delhi, India, for the partial financial assistance. LP extends his thanks to the Indian Council of Medical Research, New Delhi, for financial assistance in the form of a senior research fellowship (No. 45/25/2013/BMS/TRM). AR acknowledges the UGC-BSR fellowship (UGC-BSR No. F7-25/2007) from UGC-BSR, New Delhi, India.

Electronic supplementary material

Supplementary Fig. 1

Effect of acute F intoxication on myocardial mRNA expression of Hsf1 and Hsps in rats. (TIFF 3024 kb) (GIF 2 kb)

High resolution image (TIFF 3024 kb)

Supplementary Fig. 2

Effect of acute F intoxication on myocardial protein expression of Hsf1 and Hsps in rats. (TIFF 3072 kb) (GIF 2 kb)

High resolution image (TIFF 3072 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panneerselvam, L., Raghunath, A. & Perumal, E. Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride. Cell Stress and Chaperones 22, 743–750 (2017). https://doi.org/10.1007/s12192-017-0801-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-017-0801-1

Keywords

Navigation