Skip to main content
Log in

The global effect of heat on gene expression in cultured bovine mammary epithelial cells

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Heat stress (HS) in hot climates is a major cause that strongly negatively affects milk yield in dairy cattle, leading to immeasurable economic loss. The heat stress response of bovine mammary epithelial cells (BMECs) is one component of the acute systemic response to HS. Gene networks of BMECs respond to environmental heat loads with both intra- and extracellular signals that coordinate cellular and whole-animal metabolism. Our experimental objective was to characterize the direct effects of heat stress on the cultured bovine mammary epithelial cells by microarray analyses. The data identified 2716 differentially expressed genes in 43,000 transcripts which were changed significantly between heat-stressed and normal bovine mammary epithelial cells (fold change ≥2, P ≤ 0.001). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that these differentially expressed genes are involved in different pathways that regulate cytoskeleton, cell cycle, and stress response processes. Our study provides an overview of gene expression profile and the interaction between gene expression and heat stress, which will lead to further understanding of the potential effects of heat stress on bovine mammary glands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bernabucci U, Biffani S, Buggiotti L, Vitali A, Lacetera N, Nardone A (2014) The effects of heat stress in Italian Holstein dairy cattle. J Dairy Sci 97(1):471–486

    Article  CAS  PubMed  Google Scholar 

  • Collier RJ, Stiening CM, Pollard BC, VanBaale MJ, Baumgard LH, Gentry PC, Coussens PM (2006) Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. J Anim Sci Suppl: E1–13

  • Collier R, Collier J, Rhoads RP, Baumgard L (2008) Genes involved in the bovine heat stress response. J Dairy Sci 91:445–454

    Article  CAS  PubMed  Google Scholar 

  • Daly SEJ, Owens RA, Hartmann PE (1993) The short-term synthesis and infant-regulated removal of milk in lactating women. Exp Physiol 78:209–220

    Article  CAS  PubMed  Google Scholar 

  • Deb R, Sajjanar B, Singh U, Kumar S, Singh R, Sengar G, Sharma A (2014) Effect of heat stress on the expression profile of Hsp90 among Sahiwal (Bos indicus) and Frieswal (Bos indicus × Bos taurus) breed of cattle: a comparative study. Gene 536(2):435–440

    Article  CAS  PubMed  Google Scholar 

  • Du J, Di HS, Guo L, Li ZH, Wang GL (2008) Hyperthermia causes bovine mammary epithelial cell death by a mitochondrial-induced pathway. J Therm Biol 33(1):37–47

    Article  CAS  Google Scholar 

  • Flanders KC, Heger CD, Conway C, Tang B, Sato M, Dengler SL, Goldsmith PK, Hewitt SM, Wakefield LM. Brightfield proximity ligation assay reveals both canonical and mixed transforming growth factor-β/bone morphogenetic protein Smad signaling complexes in tissue sections (2014) J Histochem Cytochem. Aug 20. doi:10.1369/0022155414550163.

  • Grover A (2002) Molecular biology of stress responses. Cell Stress Chaperones 7(1):1–5

    Article  PubMed Central  PubMed  Google Scholar 

  • Han ZY, Mu T, Yang Z (2014) Methionine protects against hyperthermia-induced cell injury in cultured bovine mammary epithelial cells. Cell Stress Chaperones [Epub ahead of print] DOI. doi:10.1007/s12192-014-0530-7

    Google Scholar 

  • Hill DL, Wall E (2014) Dairy cattle in a temperate climate: the effects of weather on milk yield and composition depend on management. Animal 15:1–12

    Google Scholar 

  • Jego G, Hazoumé A, Seigneuric R, Garrido C (2010) Targeting heat shock proteins in cancer. Cancer Lett 2332(2):275–85

    Google Scholar 

  • Kakkar V, Prins LC, Kampinga HH (2012) DNAJ proteins and protein aggregation diseases. Curr Top Med Chem 12(22):2479–2490

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Wakamiya K, Kohka M, Yamamoto Y, Okuda K (2013) Summer heat stress affects prostaglandin synthesis in the bovine oviduct. Reproduction 146(2):103–110

    Article  CAS  PubMed  Google Scholar 

  • Llobet-Navas D, Rodriguez-Barrueco R, de la Iglesia-Vicente J, Olivan M, Castro V, Saucedo-Cuevas L, Marshall N, Putcha P, Castillo-Martin M, Bardot E, Ezhkova E, Iavarone A, Cordon-Cardo C, Silva JM (2014) The microRNA 424/503 cluster reduces CDC25A expression during cell cycle arrest imposed by transforming growth factor β in mammary epithelial cells. Mol Cell Biol 34(23):4216–4231

    Article  PubMed  Google Scholar 

  • Martin SK, Kamelgarn M, Kyprianou N (2014) Cytoskeleton targeting value in prostate cancer treatment. Am J Clin Exp Urol 2(1):15–26

    PubMed Central  PubMed  Google Scholar 

  • McConnell JR, McAlpine SR (2013) Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets. Bioorg Med Chem Lett 23(7):1923–1928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noonan EJ, Place RF, Giardina C, Hightower LE (2007) Hsp70B' regulation and function. Cell Stress Chaperones 12(3):219–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Novitskiy SV, Forrester E, Pickup MW, Gorska AE, Chytil A, Aakre M, Polosukhina D, Owens P, Yusupova DR, Zhao Z, Ye F, Shyr Y, Moses HL (2014) Attenuated transforming growth factor beta signaling promotes metastasis in a model of HER2 mammary carcinogenesis. Breast Cancer Res 16(5):425

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramamoorthi G, Sivalingam N (2014) Molecular mechanism of TGF-β signaling pathway in colon carcinogenesis and status of curcumin as chemopreventive strategy. Tumour Biol 35(8):7295–305

    Article  CAS  PubMed  Google Scholar 

  • Rhoads ML, Kim JW, Collier RJ, Crooker BA, Boisclair YR, Baumgard LH, Rhoads RP (2010) Effects of heat stress and nutrition on lactating Holstein cows: II. Aspects of hepatic growth hormone responsiveness. J Dairy Sci 93(1):170–179

    Article  CAS  PubMed  Google Scholar 

  • Rucker M, Schafer T, Scheuer C, Harder Y, Vollmar B, Menger MD (2006) Local heat shock priming promotes recanalization of thromboembolized microvasculature by upregulation of plasminogen activators. Arterios Thrombos Vasc Biol 26:1632–1639

    Article  Google Scholar 

  • Sakatani M, Bonilla L, Dobbs KB, Block J, Ozawa M, Shanker S, Yao J, Hansen PJ (2013) Changes in the transcriptome of morula-stage bovine embryos caused by heat shock: relationship to developmental acquisition of thermotolerance. Reprod Biol Endocrinol 11:3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Setroikromo R, Wierenga PK, van Waarde MA, Brunsting JF, Vellenga E, Kampinga HH (2007) Heat shock proteins and Bcl-2 expression and function in relation to the differential hyperthermic sensitivity between leukemic and normal hematopoietic cells. Cell Stress Chaperones 12(4):320–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shamay A, Shapiro F, Leitner G, Silanikove N (2003) Infusions of casein hydrolyzates into the mammary gland disrupt tight junction integrity and induce involution in cows. J Dairy Sci 86:1250–1258

    Article  CAS  PubMed  Google Scholar 

  • Silanikove N, Shamay A, Shinder D, Moran A (2000) Stress down-regulates milk yield in cows by plasmin induced beta-casein product that blocks K+ channels on the apical membranes. Life Sci 67:2201–2212

    Article  CAS  PubMed  Google Scholar 

  • Silanikove N, Shapiro F, Shinder D (2009) Acute heat stress brings down milk secretion in dairy cows by up-regulating the activity of the milk-borne negative feedback regulatory system. BMC Physiol 9:13. doi:10.1186/1472-6793-9-13

    Article  PubMed Central  PubMed  Google Scholar 

  • Sirotkin AV, Bauer M (2011) Heat shock proteins in porcine ovary: synthesis, accumulation and regulation by stress and hormones. Cell Stress and Chaperones 16:379–387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith DL, Smith T, Rude BJ, Ward SH (2013) Short communication: comparison of the effects of heat stress on milk and component yields and somatic cell score in Holstein and Jersey cows. J Dairy Sci 96(5):3028–3033

    Article  CAS  PubMed  Google Scholar 

  • Sonn L, Fujita J, Gaffin SL (2002) Invited review: Effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742

    Google Scholar 

  • Stelwagen K, van Espen DC, Verkerk GA, McFadden HA, Farr VC (1998) Elevated plasma cortisol reduces permeability of mammary tight junctions in the lactating bovine mammary epithelium. J Endocrinol 159:173–178

    Article  CAS  PubMed  Google Scholar 

  • Su E, Han X, Jiang G (2010) The transforming growth factor beta 1/SMAD signaling pathway involved in human chronic myeloid leukemia. Tumori 96(5):659–666

    CAS  PubMed  Google Scholar 

  • Zhao K, Liu HY, Zhou MM, Liu JX (2010) Establishment and characterization of a lactating bovine mammary epithelial cell model for the study of milk synthesis. Cell Biol Int 34(7):717–721

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work received funding from the National Supporting Projects for Science and Techniques of China (2012BAD12B10) and the Natural Science Foundation of China (31372290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genlin Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

TGF-beta signaling pathway (List genes are noted by red starts). (GIF 232 kb)

High resolution image (TIFF 82 kb)

Table S1

Up- and down-regulated genes lists (fold change≥2) (XLS 407 kb).

Table S2

GO functional annotation chart of down-regulated genes(fold change≥3).Top ten lists of GO functional annotation chart records under biological process, cellular component and molecular function, respectively. Only those terms that have p-values≤0.05 and number of genes in each term > 5 are shown (XLS 23.0 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Sun, Y., Wu, J. et al. The global effect of heat on gene expression in cultured bovine mammary epithelial cells. Cell Stress and Chaperones 20, 381–389 (2015). https://doi.org/10.1007/s12192-014-0559-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-014-0559-7

Keywords

Navigation