Skip to main content
Log in

Genome­wide expression analysis of the heat stress response in dermal fibroblasts of Tharparkar (zebu) and Karan-Fries (zebu × taurine) cattle

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The present study sought to evaluate mRNA expression profiles in the cultured dermal fibroblasts of Tharparkar (zebu) and Karan-Fries (zebu, Tharparkar × taurine, Holstein Friesian) cattle in response to heat stress. Bioinformatics’ analysis identified temperature-regulated biological processes and pathways. Biological processes overrepresented among the earliest genes induced by temperature stress include regulation of stress responses, protein repair, metabolism, protein transport, cell division, and apoptosis. The present microarray platform contains 51,338 synthesized oligonucleotide probes corresponding to at least 36,713 unigenes. A total of 11,183 and 8126 transcripts were differentially expressed with a fold change of ≥ 2 in Tharparkar and Karan-Fries cattle, respectively. Randomly selected real-time validation showed 83.33% correlation with microarray data. Functional annotation and pathway study of the differentially expressed transcripts or genes (DEGs) reveal that upregulated genes significantly (P < 0.05) affect protein processing and NOD-like receptor pathways (NLRs), while downregulated genes were significantly (P < 0.05) found to be associated with cell cycle, metabolism, and protein transport. Gene expression changes include activation of heat shock factors (HSFs), increased expression of heat shock proteins (HSPs), and apoptosis, while decreasing protein synthesis and another metabolism. These findings provide insights into the underlying mechanism of the physiology of heat stress in Tharparkar and Karan-Fries cattle. Understanding the biology and mechanisms of heat stress is critical to developing approaches to ameliorate current production issues for improving animal performance and agriculture economics in tropical climatic conditions. In conclusion, the present study indicates that heat stress differentially affects the expression of the significant number of genes associated with stress response, metabolism, apoptosis, and protein transport in dermal fibroblasts of Tharparkar and Karan-Fries cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adachi S, Kokura S, Okayama T, Ishikawa T, Takagi T, Handa O, Naito Y, Yoshikawa T (2009) Effect of hyperthermia combined with gemcitabine on apoptotic cell death in cultured human pancreatic cancer cell lines. Int J Hyperth 25:210–219

    CAS  Google Scholar 

  • Albacker CE, Storer NY, Langdon EM, DiBiase A, Zhou Y, David M, Langenau DM, Zon LI (2013) The histone methyltransferase SUV39H1 suppresses embryonal rhabdomyosarcoma formation in zebrafish. PLoS One 8(5):e64969. https://doi.org/10.1371/journal.pone.0064969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes- integrating cell survival and death. J Biosci 32:595–610

    CAS  PubMed  Google Scholar 

  • Azevedo JE, Schliebs W (2006) Pex14p, more than just a docking protein. Biochim Biophys Acta 1763(12):1574–1584

    CAS  PubMed  Google Scholar 

  • Babady NE, Pang YP, Elpeleg O, Isaya G (2007) Cryptic proteolytic activity of dihydrolipoamide dehydrogenase. Proc Natl Acad Sci U S A 104(15):6158–6163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baillat D, Hakimi MA, Naar AM, Shilatifard A, Cooch N, Shiekhattar R (2005) Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123:265–276

    CAS  PubMed  Google Scholar 

  • Bauer MF, Rothbauer U, Mühlenbein N, Smith RJH, Gerbitz KD, Neupert W, Brunner M, Hofmann S (2000) The mitochondrial TIM22 preprotein translocase is highly conserved throughout the eukaryotic kingdom. FEBS Lett 464:41–47. https://doi.org/10.1016/S0014-5793(99)01665-8

    Article  Google Scholar 

  • Baumgard LH, Rhoads RP (2013) Effects of heat stress on post-absorptive metabolism and energetics. Annu Rev Anim Biosci 1:311–337. https://doi.org/10.1146/annurev-animal-031412-103644

    Article  CAS  PubMed  Google Scholar 

  • Buckley BA, Somero GN (2009) cDNA microarray analysis reveals the capacity of the cold-adapted Antarctic fish Trematomus bernacchii to alter gene expression in response to heat stress. Polar Biol 32:403–415

    Google Scholar 

  • Chang HY, Yang X (2000) Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev 64:821–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Piel WH, Gui L, Bruford E, Monteiro A (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86(6):627–637. https://doi.org/10.1016/j.ygeno.2005.08.012

    Article  CAS  PubMed  Google Scholar 

  • Collier RJ, Collier JL (2012) Environmental physiology of livestock. Wiley, New York, p 368. https://doi.org/10.1002/9781119949091

    Book  Google Scholar 

  • Collier RJ, Stiening CM, Pollard BC, VanBaale MJ, Baumgard LH, Gentry PC, Coussens PM (2006) Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. J Anim Sci 84(E Suppl):E1–E13

    PubMed  Google Scholar 

  • Duncan RF (2005) Inhibition of Hsp90 function delays and impairs recovery from heat shock. FEBS J 272 (20):5244–5256. https://doi.org/10.1111/j.1742-4658.2005.04921.x

    CAS  PubMed  Google Scholar 

  • Ellis RJ (1993) The general concept of molecular chaperones. Philos Trans R Soc Lond Ser B Biol Sci 339:257–261

    CAS  Google Scholar 

  • Fisher DA, Smith JF, Pillar JS, St Denis SH, Cheng JB (1998) Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J Biol Chem 273(25):15559–15564. https://doi.org/10.1074/jbc.273.25.15559

    Article  CAS  PubMed  Google Scholar 

  • Fujita J (1999) Cold shock response in mammalian cells. J Mol Microbiol Biotechnol 1(243):255

    Google Scholar 

  • Gabai VL, Yaglom JA, Volloch V, Meriin AB, Force T, Koutroumanis M, Massie B, Mosser DD, Sherman MY (2000) Hsp72-mediated suppression of c-Jun N-terminal kinase is implicated in development of tolerance to caspase-independent cell death. Mol Cell Biol 20:6826–6836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galli G, Fratelli M (1993) Activation of apoptosis by serum deprivation in a teratocarcinoma cell line: inhibited by L-acetyl-carnitine. Exp Cell Res 204:54–60

    CAS  PubMed  Google Scholar 

  • Gaughan JB, Lacetera N, Valtorta SE, Khalifa HH, Hahn L, Mader T (2009) Response of domestic animals to climate challenges. In: Ebi KL, Burton I, McGregor GR (eds) Biometeorology of adaptation to climate variability and change. Springer Science, Heidelberg, pp 131–170

    Google Scholar 

  • Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ, Los M (2009) Apoptosis and cancer: mutations within caspase genes. J Med Genet 46(8):497–510

    CAS  PubMed  Google Scholar 

  • Hansen PJ (2004) Physiological and cellular adaptations of cattle to thermal stress. Anim Reprod Sci 82–83:349–360

    PubMed  Google Scholar 

  • Hansen PJ (2009) Effects of heat stress on mammalian reproduction. Philos Trans R Soc Lond Ser B Biol Sci 364(1534):3341–3350

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) IPCCWGI fourth assessment report. Climatic change: the physical science basis. Intergovernmental Panel Climate Change, Geneva

    Google Scholar 

  • Jin Y, Li JY, Choi SH, Kim T, Cui X, Kim N (2007) Heat shock inducing apoptosis related gene expression and apoptosis in porcine parthenotes developing in vitro. Anim Reprod Sci 100:118–127

    CAS  PubMed  Google Scholar 

  • Johnson JS, Abuajamieh M, Sanz Fernandez MV, Seibert JT, Stoakes SK, Nteeba J, Keating AF, Ross JW, Rhoads RP, Baumgard LH (2015) Thermal stress alters postabsorptive metabolism during pre- and postnatal development. In: Climate change impact on livestock: adaptation and mitigation. (Eds V Sejian, J Gaughan, L Baumgard) Springer: New Delhi, India pp. 61–80.

    Google Scholar 

  • Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 92(19):1564–1572

    CAS  PubMed  Google Scholar 

  • Keller M, Sommer AM, Pörtner HO, Abele D (2004) Seasonality of energetic functioning and production of reactive oxygen species by lugworm (Arenicola marina) mitochondria exposed to acute temperature changes. J Exp Biol 207:2529–2538

    CAS  PubMed  Google Scholar 

  • Kim HJ, Kang BS, Park JW (2005) Cellular defense against heat shock-induced oxidative damage by mitochondrial NADP(+)-dependent isocitrate dehydrogenase. Free Radic Res 39(4):441–448

    CAS  PubMed  Google Scholar 

  • Kolli V, Upadhyay RC, Singh D (2014) Peripheral blood leukocytes transcriptomic signature highlights the altered metabolic pathways by heat stress in cattle. Res Vet Sci 96(1):102–110. https://doi.org/10.1016/j.rvsc.2013.11.019

    Article  CAS  PubMed  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    CAS  PubMed  Google Scholar 

  • Kruidering M, Evan GJ (2000) Caspase-8 in apoptosis: the beginning of “the end”? IUBMB Life 50:85–90

    CAS  PubMed  Google Scholar 

  • Kumar SBV, Kumar A, Kataria M (2011) Effect of heat stress in tropical livestock and different strategies for its amelioration. J Stress Physiol Biochem 7:45–54

    Google Scholar 

  • Lacetera N, Bernabucci U, Scalia D, Basirico L, Morera P, Nardone A (2006) Heat stress elicits different responses in peripheral blood mononuclear cells from Brown Swiss and Holstein cows. J Dairy Sci 89:4606–4612

    CAS  PubMed  Google Scholar 

  • Leonardi E, Girlando S, Serio G, Mauri FA, Perrone G, Scampini S, Dalla Palma P, Barbareschi M (1992) PCNA and Ki67 expression in breast carcinoma: correlations with clinical and biological variables. J Clin Pathol 45(5):416–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Lia X, Yana Q, Mob JQ, Guan M (2003) Identification and characterization of mouse MTO1 gene related to mitochondrial tRNA modification. Biochim Biophys Acta 1629:53–59

    CAS  PubMed  Google Scholar 

  • Li D, Ferrari M, Ellis EM (2012) Human aldo-keto reductase AKR7A2 protects against the cytotoxicity and mutagenicity of reactive aldehydes and lowers intracellular reactive oxygen species in hamster V79-4 cells. Chem Biol Interact 195(1):25–34. https://doi.org/10.1016/j.cbi.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Long Y, Li L, Li Q, He X, Cui Z (2012) Transcriptomic characterization of temperature stress responses in larval zebrafish. PLoS One 7(5):e37209. https://doi.org/10.1371/journal.pone.0037209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marionnet C, Pierrard C, Lejeune F, Sok J, Thomas M, Bernerd F (2010) Different oxidative stress response in keratinocytes and fibroblasts of reconstructed skin exposed to non-extreme daily-ultraviolet radiation. PLoS One 5(8):e12059. https://doi.org/10.1371/journal.pone.0012059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason IL (1996) A world dictionary of livestock breeds, types and varieties, 4th edn. C.A.B International, Wallingford, p 273

    Google Scholar 

  • Mauger G, Bauman Y, Nennich T, Salathe E (2015) Impacts of climate change on milk production in the United States. Prof Geogr 67(1):121–131. https://doi.org/10.1080/00330124.2014.921017

    Article  Google Scholar 

  • Mehla K, Magotra A, Choudhary J, Singh AK, Mohanty AK, Upadhyay RC, Srinivasan S, Gupta P, Choudhary N, Antony B, Khan F (2014) Genomewide analysis of the heat stress response in (Sahiwal) cattle. Gene 533(2):500–507. https://doi.org/10.1016/j.gene.2013.09.051

    Article  CAS  PubMed  Google Scholar 

  • Nilsson I, Hoffmann I (2000) Cell cycle regulation by the CDC25 phosphatase family. Prog Cell Cycle Res 4:107–114

    CAS  PubMed  Google Scholar 

  • Ohisa S, Inohaya K, Takano Y, Kudo A (2010) SEC24D encoding a component of COPII is essential for vertebra formation, revealed by the analysis of the medaka mutant, vbi. Dev Biol 342(1):85–95

    CAS  PubMed  Google Scholar 

  • Park CH, Lee MJ, Ahn J, Kim S, Kim HH, Kim KH, Eun HC, Chung JH (2004) Heat shock-induced matrix metalloproteinase (MMP)-1 and MMP-3 are mediated through ERK and JNK activation and via an autocrine interleukin-6 loop. J Invest Dermatol 123:1012–1019

    CAS  PubMed  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    CAS  PubMed  Google Scholar 

  • Pastuszak I, Ketchum C, Hermanson G, Sjoberg EJ, Drake R, Elbein AD (1998) GDP-L-fucose pyrophosphorylase: purification, cDNA cloning, and properties of the enzyme. J Biol Chem 273(46):30165–30174. https://doi.org/10.1074/jbc.273.46.30165

    Article  CAS  PubMed  Google Scholar 

  • Piper PW, Millson SH, Mollapour M, Panaretou B, Siligardi G, Pearl LH, Prodromou C (2003) Sensitivity to Hsp90-targeting drugs can arise with mutation to the Hsp90 chaperone, cochaperones and plasma membrane ATP binding cassette transporters of yeast. Eur J Biochem 270(23):4689–4695

    CAS  PubMed  Google Scholar 

  • Riedel CG, Katis VL, Katou Y, Mori S, Itoh T, Helmhart W, Galova M, Petronczki M, Gregan J, Cetin B, Mudrak I, Ogris E, Mechtler K, Pelletier L, Buchholz F, Shirahige K, Nasmyth K (2009) Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis. Nature 441:53–61

    Google Scholar 

  • Salvesen GS (2002) Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 9(1):3–5

    PubMed  Google Scholar 

  • Sasaki H, Sato T, Yamauchi N, Okamoto T, Kobayashi D, Iyama S, Kato J, Matsunaga T, Takimoto R, Takayama T, Kogawa K, Watanabe N, Niitsu Y (2002) Induction of heat shock protein 47 synthesis by TGF-beta and IL-1 beta via enhancement of the heat shock element binding activity of heat shock transcription factor 1. J Immunol 168:5178–5183

    CAS  PubMed  Google Scholar 

  • Scheuringa S, Röhrichta RA, Schöning-Burkhardta B, Beyera A, Müllera S, Abtsb HF, Köhrera K (2001) Mammalian cells express two vps4 proteins both of which are involved in intracellular protein trafficking. J Mol Biol 312(3):469–480

    Google Scholar 

  • Seo JY, Chung JH (2006) Thermal aging: a new concept of skin aging. J Dermatol Sci 2(Suppl):S13–S22

    CAS  Google Scholar 

  • Shockley KR, Rosen CJ, Churchill GA, Lecka-Czernik B (2007) PPARγ2 regulates a molecular signature of marrow mesenchymal stem cells. PPAR Res 81219:1–13. https://doi.org/10.1155/2007/81219

    Article  CAS  Google Scholar 

  • Singh MK, Gurnani M (2004) Performance evaluation of Karan Fries and Karan Swiss cattle under closed breeding system. Asian Australasian J Anim Sci 17:1–6. https://doi.org/10.5713/ajas.2004.1

    Article  Google Scholar 

  • Singh AK, Upadhyay RC, Malakar D, Kumar S, Singh SV (2014) Effect of thermal stress on HSP70 expression in dermal fibroblast of (Tharparkar) and crossbred (Karan-Fries) cattle. J Therm Biol 43:46–53. https://doi.org/10.1016/j.jtherbio.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  • Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742

    CAS  PubMed  Google Scholar 

  • Sonna LA, Wenger CB, Flinn S, Sheldon HK, Sawka MN, Lilly CM (2004) Exertional heat injury and gene expression changes: a DNA microarray analysis study. J Appl Physiol 96:1943–1953

    CAS  PubMed  Google Scholar 

  • Sorensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Google Scholar 

  • St-Pierre NR, Cobanov B, Schnitkey G (2003) Economic losses from heat stress by US livestock industries. J Dairy Sci 86(E. Suppl):E52–E77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5

    Article  Google Scholar 

  • Takanashi J, Osaka H, Saitsud H, Sasakie M, Morif H, Shibayamag H, Tanakah M, Nomurai Y, Teraoj Y, Inouek K, Matsumotod N, Barkovichl AJ (2014) Different patterns of cerebellar abnormality and hypomyelination between POLR3A and POLR3B mutations. Brain and Development 36(3):259–263

    PubMed  Google Scholar 

  • Teranishi KS, Stillman JH (2007) A cDNA microarray analysis of the response to heat stress in hepatopancreas tissue of the porcelain crab (Petrolisthes cinctipes). Comp Biochem Physiol D2:53–62

    Google Scholar 

  • Theodorakis NG, Drujan D, De Maio A (1999) Thermotolerant cells show an attenuated expression of HSP70 after heat shock. J Biol Chem 274(17):12081–12086

    CAS  PubMed  Google Scholar 

  • Tomanek L, Somero GN (2000) Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (genus Tegula) from different tidal heights. Physiol Biochem Zool 73:249–256

    CAS  PubMed  Google Scholar 

  • Tort F, Ferrer-Cortès X, Thió M, Navarro-Sastre A, Matalonga L, Quintana E, Bujan N, Arias A, García-Villoria J, Acquaviva C, Vianey-Saban C, Artuch R, García-Cazorla A, Briones P, Ribes A (2013) Mutations in the lipoyltransferase LIPT1 gene cause a fatal disease associated with a specific lipoylation defect of the 2-ketoacid dehydrogenase complexes. Hum Mol Genet 23(7):1907–1915. https://doi.org/10.1093/hmg/ddt585

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay RC, Sirohi S, Ashutosh, Singh, SV, Kumar A, Gupta SK (2009) Impact of climate change on milk production of dairy animals in India. In: Aggarwal PK (edn) Global climate change and Indian agriculture: Case studies from the ICAR network project. Indian Council of Agricultural Research, New Delhi. pp 104–106

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    CAS  PubMed  Google Scholar 

  • Vurusaner B, Poli G, Basaga H (2012) Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med 52:7–18

    CAS  PubMed  Google Scholar 

  • Zhao QL, Fujiwara Y, Kondo T (2006) Mechanism of cell death induction by nitroxide and hyperthermia. Free Radic Biol Med 40:1131–1143

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express sincere thanks to the Director, NDRI, Karnal, for providing necessary facilities for research. The authors acknowledge the able technical help provided by Jyoti Choudhary and Sonia Saini.

Funding

This work was supported by the National Initiative on Climate Resilient Agriculture, Indian Council of Agricultural Research (NICRA-ICAR), New Delhi (Grant No. 2049/3033).

Author information

Authors and Affiliations

Authors

Contributions

AKS conducted experiments and RCU, SK, DM, and SVS designed the study. GC and MKS conducted the analysis of data.

Corresponding author

Correspondence to A. K. Singh.

Ethics declarations

All experiments were performed in accordance with the SPCA.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 8028 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Upadhyay, R.C., Chandra, G. et al. Genome­wide expression analysis of the heat stress response in dermal fibroblasts of Tharparkar (zebu) and Karan-Fries (zebu × taurine) cattle. Cell Stress and Chaperones 25, 327–344 (2020). https://doi.org/10.1007/s12192-020-01076-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-020-01076-2

Keywords

Navigation