Skip to main content
Log in

The heat shock response in congeneric land snails (Sphincterochila) from different habitats

  • Short Communication
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Land snails are subject to daily and seasonal variations in temperature and in water availability, and use heat shock proteins (HSPs) as part of their survival strategy. We used experimental heat stress to test whether adaptation to different habitats affects HSP expression in two closely related Sphincterochila snail species, a desert species, Sphincterochila zonata, and a Mediterranean-type species, Sphincterochila cariosa. Our findings show that in S. cariosa, heat stress caused rapid induction of Hsp70 proteins and Hsp90 in the foot and kidney tissues, whereas the desert-inhabiting species S. zonata displayed delayed induction of Hsp70 proteins in the foot and upregulation of Hsp90 alone in the kidney. Our study suggests that Sphincterochila species use HSPs as part of their survival strategy following heat stress and that adaptation to different habitats results in the development of distinct strategies of HSP expression in response to heat, namely the reduced induction of HSPs in the desert-dwelling species. We suggest that the desert species S. zonata relies on mechanisms and adaptations other than HSP induction, thus avoiding the fitness consequences of continuous HSP upregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Adhikari AS, Sridhar Rao K, Rangaraj N, Parnaik VK, Mohan Rao C (2004) Heat stress-induced localization of small heat shock proteins in mouse myoblasts: intranuclear lamin A/C speckles as target for alphaB-crystallin and Hsp25. Exp Cell Res 299 (2):393–403

    Article  PubMed  CAS  Google Scholar 

  • Alastalo TP, Hellesuo M, Sandqvist A, Hietakangas V, Kallio M, Sistonen L (2003) Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J Cell Sci 116 (Pt 17):3557–3570

    Article  PubMed  CAS  Google Scholar 

  • Arad Z, Goldenberg S, Heller J (1989) Resistance to desiccation and distribution patterns in the land snail Sphincterochila. J Zool, London 218:353–364

    Article  Google Scholar 

  • Arad Z, Goldenberg S, Heller J (1992) Intraspecific variation in resistance to desiccation and climatic gradients in the distribution of the land snail Xeropicta vestalis J Zool, London 226:643–656

    Article  Google Scholar 

  • Arad Z, Goldenberg S, Avivi TR, Heller J (1993a) Intraspecific variation in resistance to desiccation in the land snail Theba pisana. Int J Biometeorol 37:183–189

    Article  Google Scholar 

  • Arad Z, Goldenberg S, Heller J (1993b) Intraspecific variation in resistance to desiccation and climatic gradients in the distribution of the bush-dwelling land snail Trochoidea simulata. J Zool, London 229:249–265

    Article  Google Scholar 

  • Arad Z, Mizrahi T, Goldenberg S, Heller J (2010) Natural annual cycle of heat shock proteins expression in land snails: desert vs. Mediterranean species of Sphincterochila. J Exp Biol 213:3487–3495

    Article  PubMed  CAS  Google Scholar 

  • Beck FX, Neuhofer W, Muller E (2000) Molecular chaperones in the kidney: distribution, putative roles, and regulation. Amer J Physiol 279 (2):F203-215

    CAS  Google Scholar 

  • Borkan SC, Gullans SR (2002) Molecular chaperones in the kidney. Ann Rev Physiol 64:503–527

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brooks SP, Storey KB (1995) Evidence for aestivation specific proteins in Otala lactea. Mol Cell Biochem 143 (1):15–20

    Article  PubMed  CAS  Google Scholar 

  • Cameron RAD (1970) The survival, weight-loss and behaviour of three species of land snail in conditions of low humidity. J Zool, London 160:143–157

    Article  Google Scholar 

  • Dastoor Z, Dreyer J (2000) Nuclear translocation and aggregate formation of heat shock cognate protein 70 (Hsc70) in oxidative stress and apoptosis. J Cell Sci 113 (Pt 16):2845–2854

    PubMed  CAS  Google Scholar 

  • Diller KR (2006) Stress protein expression kinetics. Annu Rev Biomed Eng 8:403–424

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Miller LP, Sanders JG, Somero GN (2008) Heat-shock protein 70 (Hsp70) expression in four limpets of the genus Lottia: interspecific variation in constitutive and inducible synthesis correlates with in situ exposure to heat stress. Biol Bull 215 (2):173–181

    Article  PubMed  Google Scholar 

  • Edgerly JS, Tadimalla A, Dahlhoff EP (2005) Adaptation to thermal stress in lichen-eating webspinners (Embioptera): habitat choice, domicile construction and the potential role of heat shock proteins. Func Ecol 19 255–262

    Article  Google Scholar 

  • Evgen'ev MB, Garbuz DG, Shilova VY, Zatsepina OG (2007) Molecular mechanisms underlying thermal adaptation of xeric animals. J Biosci 32 (3):489–499

    Article  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann Rev Physiol 61:243–282

    Article  CAS  Google Scholar 

  • Jaffe S (1988) Climate of Israel. In: Yom-Tov Y and Tchernov E (eds) The Zoogeography of Israel. Dr. W. Junk Publishers, Dordrecht, pp 79–94

    Google Scholar 

  • Köhler HR, Lazzara R, Dittbrenner N, Capowiez Y, Mazzia C, Triebskorn R (2009) Snail phenotypic variation and stress proteins: do different heat response strategies contribute to Waddington's widget in field populations? J Exp Zool B Mol Dev Evol 312 (2):136–147

    Article  PubMed  Google Scholar 

  • Kotoglou P, Kalaitzakis A, Vezyraki P, Tzavaras T, Michalis LK, Dantzer F, Jung JU, Angelidis C (2009) Hsp70 translocates to the nuclei and nucleoli, binds to XRCC1 and PARP-1, and protects HeLa cells from single-strand DNA breaks. Cell Stress Chaperones 14 (4):391–406

    Article  PubMed  CAS  Google Scholar 

  • Krebs RA, Bettencourt BR (1999) Evolution of thermotolerance and variation in the heat shock protein, Hsp70. Amer Zool 39:910–919

    CAS  Google Scholar 

  • Krebs RA, Feder ME (1997) Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress and Chaperones 2 (1):60–71

    Article  PubMed  CAS  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92 (5):2177–2186

    PubMed  CAS  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Ann Rev Biochem 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Ann Rev Gen 22:631–677

    Article  CAS  Google Scholar 

  • Machin J (1967) Structural adaptation for reducing water-loss in three species of terrestrial snails. J Zool, London 152:55–65

    Article  Google Scholar 

  • Mizrahi T, Heller J, Goldenberg S, Arad Z (2010) Heat shock proteins and resistance to desiccation in congeneric land snails. Cell Stress and Chaperones 15:351–363. doi:10.1007/s12192-009-0150-9

    Article  PubMed  CAS  Google Scholar 

  • Mizrahi T, Heller J, Goldenberg S, Arad Z (2011) Heat shock protein expression in relation to reproductive cycle in land snails: Implications for survival. Comp Biochem Physiol A Mol Integr Physiol 160 (2):149–155

    Article  PubMed  CAS  Google Scholar 

  • Nakano K, Iwama G (2002) The 70-kDa heat shock protein response in two intertidal sculpins, Oligocottus maculosus and O. snyderi: relationship of hsp70 and thermal tolerance. Comp Biochem Physiol A 133 (1):79–94

    Article  Google Scholar 

  • Pakay JL, Withers PC, Hobbs AA, Guppy M (2002) In vivo downregulation of protein synthesis in the snail Helix apersa during estivation. Amer J Physiol 283 (1):R197-204

    CAS  Google Scholar 

  • Ramnanan CJ, Allan ME, Groom AG, Storey KB (2009) Regulation of global protein translation and protein degradation in aerobic dormancy. Mol Cell Biochem 323 (1–2):9–20

    Article  PubMed  CAS  Google Scholar 

  • Reuner A, Brümmer F, Schill RO (2008) Heat shock proteins (Hsp70) and water content in the estivating Mediterranean Grunt Snail (Cantareus apertus). Comp Biochem Physiol B 151 (1):28–31

    Article  PubMed  Google Scholar 

  • Scheil AE, Köhler HR, Triebskorn R (2011) Heat tolerance and recovery in Mediterranean land snails after pre-exposure in the field. J Molluscan studies 77:165–174

    Article  Google Scholar 

  • Schmidt-Nielsen K, Taylor CR, Shkolnik A (1971) Desert snails: problems of heat, water and food. J Exp Biol 55:385–398

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K, Taylor CR, Shkolnik A (1972) Desert snail: problems of survival Symp Zool Soc Lond 31:1–13

    Google Scholar 

  • Shabtay A, Arad Z (2005) Ectothermy and endothermy: evolutionary perspectives of thermoprotection by HSPs. J Exp Biol 208 (Pt 14):2773–2781

    Article  PubMed  CAS  Google Scholar 

  • Somero GN (1995) Proteins and temperature. Ann Rev Physiol 57:43–68

    Article  CAS  Google Scholar 

  • Sørensen JG, Michalak P, Justesen J, Loeschcke V (1999) Expression of the heat-shock protein HSP70 in Drosophila buzzatii lines selected for thermal resistance. Hereditas 131 (2):155–164

    Article  PubMed  Google Scholar 

  • Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  • Storey KB (2002) Life in the slow lane: molecular mechanisms of estivation. Comp Biochem Physiol A 133 (3):733–754

    Article  Google Scholar 

  • Tomanek L, Somero GN (1999) Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. J Exp Biol 202 (Pt 21):2925–2936

    PubMed  Google Scholar 

  • Wang S, Xie W, Rylander MN, Tucker PW, Aggarwal S, Diller KR (2008) HSP70 kinetics study by continuous observation of HSP-GFP fusion protein expression on a perfusion heating stage. Biotechnol Bioeng 99 (1):146–154

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Carmi Korine for his assistance in desert snail collection. This work was supported by the Israel Science Foundation grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeev Arad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizrahi, T., Heller, J., Goldenberg, S. et al. The heat shock response in congeneric land snails (Sphincterochila) from different habitats. Cell Stress and Chaperones 17, 639–645 (2012). https://doi.org/10.1007/s12192-012-0340-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-012-0340-8

Keywords

Navigation