Skip to main content
Log in

Heat shock proteins and resistance to desiccation in congeneric land snails

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Land snails are subject to daily and seasonal variations in temperature and in water availability and depend on a range of behavioral and physiological adaptations for coping with problems of maintaining water, ionic, and thermal balance. Heat shock proteins (HSPs) are a multigene family of proteins whose expression is induced by a variety of stress agents. We used experimental desiccation to test whether adaptation to different habitats affects HSP expression in two closely related Sphincterochila snail species, a desiccation-resistant, desert species Sphincterochila zonata, and a Mediterranean-type, desiccation-sensitive species Sphincterochila cariosa. We examined the HSP response in the foot, hepatopancreas, and kidney tissues of snails exposed to normothermic desiccation. Our findings show variations in the HSP response in both timing and magnitude between the two species. The levels of endogenous Hsp72 in S. cariosa were higher in all the examined tissues, and the induction of Hsp72, Hsp74, and Hsp90 developed earlier than in S. zonata. In contrary, the induction of sHSPs (Hsp25 and Hsp30) was more pronounced in S. zonata compared to S. cariosa. Our results suggest that land snails use HSPs as part of their survival strategy during desiccation and as important components of the aestivation mechanism in the transition from activity to dormancy. Our study underscores the distinct strategy of HSP expression in response to desiccation, namely the delayed induction of Hsp70 and Hsp90 together with enhanced induction of sHSPs in the desert-dwelling species, and suggests that evolution in harsh environments will result in selection for reduced Hsp70 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adhikari AS, Sridhar Rao K, Rangaraj N, Parnaik VK, Mohan Rao C (2004) Heat stress-induced localization of small heat shock proteins in mouse myoblasts: intranuclear lamin A/C speckles as target for alpha B-crystallin and Hsp25. Exp Cell Res 299:393–403

    Article  PubMed  CAS  Google Scholar 

  • Alastalo TP, Hellesuo M, Sandqvist A, Hietakangas V, Kallio M, Sistonen L (2003) Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J Cell Sci 116:3557–3570

    Article  PubMed  CAS  Google Scholar 

  • Arad Z (2001) Desiccation and rehydration in land snails—a test for distinct set points in Theba pisana. Isr J Zool 47:41–53

    Google Scholar 

  • Arad Z, Goldenberg S, Heller J (1989) Comparative water economy in five species of Sphincterochila. J Zool (Lond) 218:353–364

    Article  Google Scholar 

  • Arad Z, Goldenberg S, Heller J (1992) Intraspecific variation in resistance to desiccation and climatic gradients in the distribution of the land snail Xeropicta vestalis. J Zool (Lond) 226:643–656

    Article  Google Scholar 

  • Arad Z, Goldenberg S, Heller J (1993) Intraspecific variation in resistance to desiccation and climatic gradients in the distribution of the bush-dwelling land snail Trochoidea simulata. J Zool (Lond) 229:249–265

    Article  Google Scholar 

  • Aufricht C, Ardito T, Thulin G, Kashgarian M, Siegel NJ, Van Why SK (1998) Heat-shock protein 25 induction and redistribution during actin reorganization after renal ischemia. Am J Physiol 274:F215–F222

    PubMed  CAS  Google Scholar 

  • Beck FX, Neuhofer W, Muller E (2000) Molecular chaperones in the kidney: distribution, putative roles, and regulation. Am J Physiol Renal Physiol 279:F203–F215

    PubMed  CAS  Google Scholar 

  • Bettencourt BR, Feder ME, Cavicchi S (1999) Experimental evolution of HSP70 expression and thermotolerance in Drosophila melanogaster. Evolution 53:484–492

    Article  CAS  Google Scholar 

  • Boon-Niermeijer EK, Tuyl M, van de Scheur H (1986) Evidence for two states of thermotolerance. Int J Hyperthermia 2:93–105

    PubMed  CAS  Google Scholar 

  • Boon-Niermeijer EK, Souren JE, Van Wijk R (1987) Thermotolerance induced by 2, 4-dinitrophenol. Int J Hyperthermia 3:133–141

    Article  PubMed  CAS  Google Scholar 

  • Boon-Niermeijer EK, Souren JE, De Waal AM, Van Wijk R (1988) Thermotolerance induced by heat and ethanol. Int J Hyperthermia 4:211–222

    Article  PubMed  CAS  Google Scholar 

  • Brooks SP, Storey KB (1995) Evidence for aestivation specific proteins in Otala lactea. Mol Cell Biochem 143:15–20

    Article  PubMed  CAS  Google Scholar 

  • Bryantsev AL, Loktionova SA, Ilyinskaya OP, Tararak EM, Kampinga HH, Kabakov AE (2002) Distribution, phosphorylation, and activities of Hsp25 in heat-stressed H9c2 myoblasts: a functional link to cytoprotection. Cell Stress Chaperones 7:146–155

    Article  PubMed  CAS  Google Scholar 

  • Chapple JP, Smerdon GR, Hawkins AJS (1997) Stress-70 protein induction in Mytilus edulis: tissue-specific responses to elevated temperature reflect relative vulnerability and physiological function. J Exp Mar Biol Ecol 217:225–235

    Article  CAS  Google Scholar 

  • Clegg JS, Jackson SA, Warner AH (1994) Extensive intracellular translocations of a major protein accompany anoxia in embryos of Artemia franciscana. Exp Cell Res 212:77–83

    Article  PubMed  CAS  Google Scholar 

  • Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta S, Hohman TC, Carper D (1992) Hypertonic stress induces alpha B-crystallin expression. Exp Eye Res 54:461–470

    Article  PubMed  CAS  Google Scholar 

  • Dastoor Z, Dreyer J (2000) Nuclear translocation and aggregate formation of heat shock cognate protein 70 (Hsc70) in oxidative stress and apoptosis. J Cell Sci 113(Pt 16):2845–2854

    PubMed  CAS  Google Scholar 

  • Dietz TJ, Somero GN (1992) The threshold induction temperature of the 90-kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (genus Gillichthys). Proc Natl Acad Sci U S A 89:3389–3393

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Miller LP, Sanders JG, Somero GN (2008) Heat-shock protein 70 (Hsp70) expression in four limpets of the genus Lottia: interspecific variation in constitutive and inducible synthesis correlates with in situ exposure to heat stress. Biol Bull 215:173–181

    Article  PubMed  Google Scholar 

  • Easton DP, Rutledge PS, Spotila JR (1987) Heat shock protein induction and induced thermal tolerance are independent in adult salamanders. J Exp Zool 241:263–267

    Article  PubMed  CAS  Google Scholar 

  • Edgerly JS, Tadimalla A, Dahlhoff EP (2005) Adaptation to thermal stress in lichen-eating web spinners (Embioptera): habitat choice, domicile construction and the potential role of heat shock proteins. Funct Ecol 19:255–262

    Article  Google Scholar 

  • Evgen’ev MB, Garbuz DG, Shilova VY, Zatsepina OG (2007) Molecular mechanisms underlying thermal adaptation of xeric animals. J Biosci 32:489–499

    Article  PubMed  Google Scholar 

  • Feder ME (1999) Organismal, ecological, and evolutionary aspects of heat-shock proteins and the stress response: established conclusions and unresolved issues. Am Zool 39:857–864

    Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  PubMed  CAS  Google Scholar 

  • Feder ME, Bedford TB, Albright DR, Michalak P (2002) Evolvability of Hsp70 expression under artificial election for inducible thermotolerance in independent populations of Drosophila melanogaster. Physiol Biochem Zool 75:325–334

    Article  PubMed  CAS  Google Scholar 

  • Ferreira AS, Totola MR, Kasuya MCM, Araujo EF, Borges AC (2005) Small heat shock proteins in the development of thermotolerance in Pisolithus sp. J Therm Biol 30:595–602

    Article  CAS  Google Scholar 

  • Flanagan SW, Ryan AJ, Gisolfi CV, Moseley PL (1995) Tissue-specific HSP70 response in animals undergoing heat stress. Am J Physiol 268:R28–R32

    PubMed  CAS  Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846

    Article  PubMed  CAS  Google Scholar 

  • Hayward SA, Rinehart JP, Denlinger DL (2004) Desiccation and rehydration elicit distinct heat shock protein transcript responses in flesh fly pupae. J Exp Biol 207:963–971

    Article  PubMed  CAS  Google Scholar 

  • Heikkila JJ (2004) Regulation and function of small heat shock protein genes during amphibian development. J Cell Biochem 93:672–680

    Article  PubMed  CAS  Google Scholar 

  • Hofmann GE, Somero GN (1996) Interspecific variation in thermal denaturation of proteins in the congeneric mussels Mytilus trossulus and M. galloprovincialis: evidence from the heat-shock response and protein ubiquitination. Mar Biol 126:65–75

    Article  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    PubMed  CAS  Google Scholar 

  • Jiang S, Qiu L, Zhou F, Huang J, Guo Y, Yang K (2009) Molecular cloning and expression analysis of a heat shock protein (Hsp90) gene from black tiger shrimp (Penaeus monodon). Mol Biol Rep 36:127–134

    Article  PubMed  CAS  Google Scholar 

  • King YT, Lin CS, Lin JH, Lee WC (2002) Whole-body hyperthermia-induced thermotolerance is associated with the induction of heat shock protein 70 in mice. J Exp Biol 205:273–278

    PubMed  CAS  Google Scholar 

  • Krebs RA, Feder ME (1997a) Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress Chaperones 2:60–71

    Article  PubMed  CAS  Google Scholar 

  • Krebs RA, Feder ME (1997b) Tissue-specific variation in Hsp70 expression and thermal damage in Drosophila melanogaster larvae. J Exp Biol 200:2007–2015

    PubMed  CAS  Google Scholar 

  • Lavoie JN, Gingras-Breton G, Tanguay RM, Landry J (1993) Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. J Biol Chem 268:3420–3429

    PubMed  CAS  Google Scholar 

  • Lee S, Owen HA, Prochaska DJ, Barnum SR (2000) HSP16.6 is involved in the development of thermotolerance and thylakoid stability in the unicellular cyanobacterium, Synechocystis sp. PCC 6803. Curr Microbiol 40:283–287

    Article  PubMed  CAS  Google Scholar 

  • Lerman DN, Michalak P, Helin AB, Bettencourt BR, Feder ME (2003) Modification of heat-shock gene expression in Drosophila melanogaster populations via transposable elements. Mol Biol Evol 20:135–144

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Martinez G, Benoit JB, Rinehart JP, Elnitsky MA, Lee RE Jr, Denlinger DL (2009) Dehydration, rehydration, and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica. J Comp Physiol B 179:481–491

    Article  PubMed  CAS  Google Scholar 

  • Machin J (1967) Structural adaptation for reducing water-loss in three species of terrestrial snails. J Zool Lond 152:55–65

    Article  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Preville X, Chareyron P, Briolay J, Klemenz R, Arrigo AP (1995) Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J Immunol 154:363–374

    PubMed  CAS  Google Scholar 

  • Mirkes PE, Little SA, Cornel L, Welsh MJ, Laney TN, Wright FH (1996) Induction of heat shock protein 27 in rat embryos exposed to hyperthermia. Mol Reprod Dev 45:276–284

    Article  PubMed  CAS  Google Scholar 

  • Morrow G, Heikkila JJ, Tanguay RM (2006) Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones 11:51–60

    Article  PubMed  CAS  Google Scholar 

  • Moseley PL (1997) Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol 83:1413–1417

    PubMed  CAS  Google Scholar 

  • Mulligan-Tuttle A, Heikkila JJ (2007) Expression of the small heat shock protein gene, hsp30, in Rana catesbeiana fibroblasts. Comp Biochem Physiol A Mol Integr Physiol 148:308–316

    Article  PubMed  CAS  Google Scholar 

  • Nakano K, Iwama G (2002) The 70-kDa heat shock protein response in two intertidal sculpins, Oligocottus maculosus and O. snyderi: relationship of hsp70 and thermal tolerance. Comp Biochem Physiol A Mol Integr Physiol 133:79–94

    Article  PubMed  Google Scholar 

  • Neuhofer W, Muller E, Burger-Kentischer A, Beck FX (1998) Hypertonicity affects heat shock protein 27 and F-actin localization in Madin-Darby canine kidney cells. Kidney Int Suppl 67:S165–S167

    Article  PubMed  CAS  Google Scholar 

  • Neuhofer W, Fraek ML, Ouyang N, Beck FX (2005) Differential expression of heat shock protein 27 and 70 in renal papillary collecting duct and interstitial cells—implications for urea resistance. J Physiol 564:715–722

    Article  PubMed  CAS  Google Scholar 

  • Nollen EA, Brunsting JF, Roelofsen H, Weber LA, Kampinga HH (1999) In vivo chaperone activity of heat shock protein 70 and thermotolerance. Mol Cell Biol 19:2069–2079

    PubMed  CAS  Google Scholar 

  • Norris CE, diIorio PJ, Schultz RJ, Hightower LE (1995) Variation in heat shock proteins within tropical and desert species of poeciliid fishes. Mol Biol Evol 12:1048–1062

    PubMed  CAS  Google Scholar 

  • Norris CE, Brown MA, Hickey E, Weber LA, Hightower LE (1997) Low-molecular-weight heat shock proteins in a desert fish (Poeciliopsis lucida): homologs of human Hsp27 and Xenopus Hsp30. Mol Biol Evol 14:1050–1061

    PubMed  CAS  Google Scholar 

  • Ohno A, Muller E, Fraek ML, Thurau K, Beck F (1997) Solute composition and heat shock proteins in rat renal medulla. Pflugers Arch 434:117–122

    Article  PubMed  CAS  Google Scholar 

  • Pakay JL, Withers PC, Hobbs AA, Guppy M (2002) In vivo downregulation of protein synthesis in the snail Helix aspersa during estivation. Am J Physiol Regul Integr Comp Physiol 283:R197–204

    PubMed  CAS  Google Scholar 

  • Parcellier A, Schmitt E, Brunet M, Hammann A, Solary E, Garrido C (2005) Small heat shock proteins HSP27 and alpha B-crystallin: cytoprotective and oncogenic functions. Antioxid Redox Signal 7:404–413

    Article  PubMed  CAS  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133

    CAS  Google Scholar 

  • Ramirez V, Uribe N, Garcia-Torres R, Castro C, Rubio J, Gamba G, Bobadilla NA (2004) Upregulation and intrarenal redistribution of heat shock proteins 90alpha and 90beta by low-sodium diet in the rat. Cell Stress Chaperones 9:198–206

    Article  PubMed  CAS  Google Scholar 

  • Ramnanan CJ, Groom AG, Storey KB (2007) Akt and its downstream targets play key roles in mediating dormancy in land snails. Comp Biochem Physiol B Biochem Mol Biol 148:245–255

    Article  PubMed  CAS  Google Scholar 

  • Ramnanan CJ, Allan ME, Groom AG, Storey KB (2009) Regulation of global protein translation and protein degradation in aerobic dormancy. Mol Cell Biochem 323:9–20

    Article  PubMed  CAS  Google Scholar 

  • Ravindran RK, Tablin F, Crowe JH, Oliver AE (2005) Resistance to dehydration damage in hela cells correlates with the presence of endogenous heat shock proteins. Cell Preserv Technol 3:155–164

    Article  CAS  Google Scholar 

  • Riddle WA (1983) Physiological ecology of land snails and slugs. In: Russell-Hunter WD (ed) The Mollusca, vol 6. Academic, London, pp 431–461

    Google Scholar 

  • Rollet E, Lavoie JN, Landry J, Tanguay RM (1992) Expression of Drosophila’s 27 kDa heat shock protein into rodent cells confers thermal resistance. Biochem Biophys Res Commun 185:116–120

    Article  PubMed  CAS  Google Scholar 

  • Sanders BM, Hope C, Pascoe VM, Martin LS (1991) Characterization of the stress protein response in two species of Collisella limpets with different temperature tolerances. Physiol Zool 64:1471–1489

    CAS  Google Scholar 

  • Schill RO, Steinbruck GH, Kohler HR (2004) Stress gene (hsp70) sequences and quantitative expression in Milnesium tardigradum (Tardigrada) during active and cryptobiotic stages. J Exp Biol 207:1607–1613

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K, Taylor CR, Shkolnik A (1971) Desert snails: problems of heat, water and food. J Exp Biol 55:385–398

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K, Taylor CR, Shkolnik A (1972) Desert snail: problems of survival. Symp Zool Soc Lond 31:1–13

    Google Scholar 

  • Schober A, Muller E, Thurau K, Beck FX (1997) The response of heat shock proteins 25 and 72 to ischaemia in different kidney zones. Pflugers Arch 434:292–299

    Article  PubMed  CAS  Google Scholar 

  • Scott MA, Locke M, Buck LT (2003) Tissue-specific expression of inducible and constitutive Hsp70 isoforms in the western painted turtle. J Exp Biol 206:303–311

    Article  PubMed  CAS  Google Scholar 

  • Shabtay A, Arad Z (2005) Ectothermy and endothermy: evolutionary perspectives of thermoprotection by HSPs. J Exp Biol 208:2773–2781

    Article  PubMed  CAS  Google Scholar 

  • Shilova VY, Garbuz DG, Evgen’ev MB, Zatsepina OG (2006) Small heat shock proteins and adaptation of various Drosophila species to hyperthermia. Mol Biol 40:235–239

    Article  CAS  Google Scholar 

  • Smith BJ, Yaffe MP (1991) Uncoupling thermotolerance from the induction of heat shock proteins. Proc Natl Acad Sci U S A 88:11091–11094

    Article  PubMed  CAS  Google Scholar 

  • Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68

    Article  PubMed  CAS  Google Scholar 

  • Sorensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  • Sorte CJB, Hofmann GE (2005) Thermotolerance and heat-shock protein expression in Northeastern Pacific Nucella species with different biogeographical ranges. Mar Biol 146:985–993

    Article  CAS  Google Scholar 

  • Storey KB (2002) Life in the slow lane: molecular mechanisms of estivation. Comp Biochem Physiol A Mol Integr Physiol 133:733–754

    Article  PubMed  Google Scholar 

  • Storey KB, Storey JM (1990) Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q Rev Biol 65:145–174

    Article  PubMed  CAS  Google Scholar 

  • Tammariello SP, Rinehart JP, Denlinger DL (1999) Desiccation elicits heat shock protein transcription in the flesh fly, Sarcophaga crassipalpis, but does not enhance tolerance to high or low temperatures. J Insect Physiol 45:933–938

    Article  PubMed  CAS  Google Scholar 

  • Tomanek L, Somero GN (1999) Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. J Exp Biol 202:2925–2936

    PubMed  Google Scholar 

  • Tomanek L, Somero GN (2002) Interspecific- and acclimation-induced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genus Tegula): implications for regulation of hsp gene expression. J Exp Biol 205:677–685

    PubMed  CAS  Google Scholar 

  • Torok Z, Goloubinoff P, Horvath I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E, Crowe JH, Vigh L (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci U S A 98:3098–3103

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov HA, Karaev KK, Lyashko VN, Evgen’ev MB (1993) Heat-shock response in camel (Camelus dromedarius) blood cells and adaptation to hyperthermia. Comp Biochem Physiol B 106:867–872

    Article  PubMed  CAS  Google Scholar 

  • Widelitz RB, Magun BE, Gerner EW (1986) Effects of cycloheximide on thermotolerance expression, heat shock protein synthesis, and heat shock protein mRNA accumulation in rat fibroblasts. Mol Cell Biol 6:1088–1094

    PubMed  CAS  Google Scholar 

  • Zatsepina OG, Ulmasov KA, Beresten SF, Molodtsov VB, Rybtsov SA, Evgen’ev MB (2000) Thermotolerant desert lizards characteristically differ in terms of heat-shock system regulation. J Exp Biol 203:1017–1025

    PubMed  CAS  Google Scholar 

  • Zatsepina OG, Velikodvorskaia VV, Molodtsov VB, Garbuz D, Lerman DN, Bettencourt BR, Feder ME, Evgenev MB (2001) A Drosophila melanogaster strain from sub-equatorial Africa has exceptional thermotolerance but decreased Hsp70 expression. J Exp Biol 204:1869–1881

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ariel Shabtay for his comments. This work was supported by the Israel Science Foundation grant no. 1125/07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeev Arad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizrahi, T., Heller, J., Goldenberg, S. et al. Heat shock proteins and resistance to desiccation in congeneric land snails. Cell Stress and Chaperones 15, 351–363 (2010). https://doi.org/10.1007/s12192-009-0150-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0150-9

Keywords

Navigation