Skip to main content

Advertisement

Log in

Heat shock protein 70 inhibits hydrogen peroxide-induced nucleolar fragmentation via suppressing cleavage and down-regulation of nucleolin

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

It has been reported that nucleolar fragmentation is a part of the overall apoptotic morphology, however, it is currently obscure whether and how nucleolar fragmentation can be induced by hydrogen peroxide (H2O2) and heat shock protein 70 (Hsp70) can prevent nucleolar fragmentation. To dissect these two questions, C2C12 myogenic cells and immortalized mouse embryonic fibroblasts (MEFs) with heat shock transcriptional factor 1 (HSF1) null mutation were treated with heat shock response (HS) (42.5 ± 0.5°C for 1 h and recovery at 37°C for 24 h) and then were insulted with 0.5 mmol/L H2O2. Morphological changes of nucleoli were observed under contrast microscope or electronic microscope. It was found that (1) stimulation with H2O2-induced nucleolar fragmentation by mediating cleavage and down-regulation of nucleolar protein, nucleolin in C2C12 myocytes and MEFs; (2) HS suppressed nucleolar fragmentation by inducing the expression of Hsp70 in an HSF1-dependent manner as indicated by assays of transfection with Hsp70 antisense oligonucleotides (AS-ONs) or recombinant plasmids of full-length Hsp70 cDNA; (3) protection of Hsp70 against nucleolar fragmentation was related to its accumulation in nucleolus mediated by nuclear localization sequence and its inhibition against cleavage and down-regulation of nucleolin. These results suggested that H2O2-induced nucleolar fragmentation and HS or Hsp70 inhibit H2O2-induced nucleolar fragmentation through the translocation of Hsp70 into nucleolar and its protection against impairment of nucleolin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AS-ONs:

Antisense oligonucleotides

S-ONs:

Sense oligonucleotides

HS:

Heat shock response

HSF1:

Heat shock transcriptional factor 1

Hsps:

Heat shock proteins

Hsp70:

Heat shock protein 70

H2O2 :

Hydrogen peroxide

MEFs:

Mouse embryonic fibroblasts

NLS:

Nuclear localization sequence

References

  • Akerfelt M, Trouillet D, Mezger V, Sistonen L (2007) Heat shock factors at a crossroad between stress and development. Ann N Y Acad Sci 1113:15–27

    Article  PubMed  CAS  Google Scholar 

  • Al-Baker EA, Boyle J, Harry R, Kill IR (2004) A p53-independent pathway regulates nucleolar segregation and antigen translocation in response to DNA damage induced by UV irradiation. Exp Cell Res 292:179–186

    Article  PubMed  CAS  Google Scholar 

  • Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 83:117–132

    PubMed  CAS  Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    Article  PubMed  CAS  Google Scholar 

  • Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40:216–227

    Article  PubMed  CAS  Google Scholar 

  • Evdonin AL, Guzhova IV, Margulis BA, Medvedeva ND (2006) Extracellular heat shock protein 70 mediates heat stress-induced epidermal growth factor receptor transactivation in A431 carcinoma cells. FEBS Lett 580:6674–6678

    Article  PubMed  CAS  Google Scholar 

  • Fang SH, Yeh NH (1993) The self-cleaving activity of nucleolin determines its molecular dynamics in relation to cell proliferation. Exp Cell Res 208:48–53

    Article  PubMed  CAS  Google Scholar 

  • Fraschini A, Bottone MG, Scovassi AI, Denegri M, Risueno MC, Testillano PS, Martin TE, Biggiogera M, Pellicciari C (2005) Changes in extranucleolar transcription during actinomycin D-induced apoptosis. Histol Histopathol 20:107–117

    PubMed  CAS  Google Scholar 

  • Guerrero PA, Maggert KA (2011) The CCCTC-binding factor (CTCF) of Drosophila contributes to the regulation of the ribosomal DNA and nucleolar stability. PLoS One 6:e16401

    Article  PubMed  CAS  Google Scholar 

  • Halicka HD, Bedner E, Darzynkiewicz Z (2000) Segregation of RNA and separate packaging of DNA and RNA in apoptotic bodies during apoptosis. Exp Cell Res 260:248–256

    Article  PubMed  CAS  Google Scholar 

  • Heun P (2007) SUMOrganization of the nucleus. Curr Opin Cell Biol 19:350–355

    Article  PubMed  CAS  Google Scholar 

  • Horky M, Wurzer G, Kotala V, Anton M, Vojtesek B, Vacha J, Wesierska-Gadek J (2001) Segregation of nucleolar components coincides with caspase-3 activation in cisplatin-treated HeLa cells. J Cell Sci 114:663–670

    PubMed  CAS  Google Scholar 

  • Hulsmans M, Holvoet P (2010) The vicious circle between oxidative stress and inflammation in atherosclerosis. J Cell Mol Med 14:70–78

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Shimojo T, Fujisaki H, Tamamori M, Ishiyama S, Adachi S, Abe S, Marumo F, Hiroe M (1999) Thermal preconditioning protects rat cardiac muscle cells from doxorubicin-induced apoptosis. Life Sci 64:755–761

    Article  PubMed  CAS  Google Scholar 

  • Jiang B, Xiao W, Shi Y, Liu M, Xiao X (2005a) Heat shock pretreatment inhibited the release of Smac/DIABLO from mitochondria and apoptosis induced by hydrogen peroxide in cardiomyocytes and C2C12 myogenic cells. Cell Stress Chaperones 10:252–262

    Article  PubMed  CAS  Google Scholar 

  • Jiang B, Xiao W, Shi Y, Liu M, Xiao X (2005b) Role of Smac/DIABLO in hydrogen peroxide-induced apoptosis in C2C12 myogenic cells. Free Radic Biol Med 39:658–667

    Article  PubMed  CAS  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592

    Article  PubMed  CAS  Google Scholar 

  • Khalil AA, Kabapy NF, Deraz SF, Smith C (2011) Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta 1816:89–104

    PubMed  CAS  Google Scholar 

  • Kito S, Shimizu K, Okamura H, Yoshida K, Morimoto H, Fujita M, Morimoto Y, Ohba T, Haneji T (2003) Cleavage of nucleolin and argyrophilic nucleolar organizer region associated proteins in apoptosis-induced cells. Biochem Biophys Res Commun 300:950–956

    Article  PubMed  CAS  Google Scholar 

  • Kotoglou P, Kalaitzakis A, Vezyraki P, Tzavaras T, Michalis LK, Dantzer F, Jung JU, Angelidis C (2009) Hsp70 translocates to the nuclei and nucleoli, binds to XRCC1 and PARP-1, and protects HeLa cells from single-strand DNA breaks. Cell Stress Chaperones 14:391–406

    Article  PubMed  CAS  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    PubMed  CAS  Google Scholar 

  • Lam YW, Lamond AI, Mann M, Andersen JS (2007) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17:749–760

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Li J, Tao Y, Xiao X (2007) Small heat shock protein alphaB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis. Biochem Biophys Res Commun 354:109–114

    Article  PubMed  CAS  Google Scholar 

  • Ma N, Matsunaga S, Takata H, Ono-Maniwa R, Uchiyama S, Fukui K (2007) Nucleolin functions in nucleolus formation and chromosome congression. J Cell Sci 120:2091–2105

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  PubMed  CAS  Google Scholar 

  • McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528

    Article  PubMed  CAS  Google Scholar 

  • Morcillo G, Gorab E, Tanguay RM, Diez JL (1997) Specific intranucleolar distribution of Hsp70 during heat shock in polytene cells. Exp Cell Res 236:361–370

    Article  PubMed  CAS  Google Scholar 

  • Otake Y, Soundararajan S, Sengupta TK, Kio EA, Smith JC, Pineda-Roman M, Stuart RK, Spicer EK, Fernandes DJ (2007) Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109:3069–3075

    PubMed  CAS  Google Scholar 

  • Pelham HR (1984) Hsp70 accelerates the recovery of nucleolar morphology after heat shock. Embo J 3:3095–3100

    PubMed  CAS  Google Scholar 

  • Peng W, Zhang Y, Zheng M, Cheng H, Zhu W, Cao CM, Xiao RP (2010) Cardioprotection by CaMKII-deltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70. Circ Res 106:102–110

    Article  PubMed  CAS  Google Scholar 

  • Srivastava M, Pollard HB (1999) Molecular dissection of nucleolin's role in growth and cell proliferation: new insights. Faseb J 13:1911–1922

    PubMed  CAS  Google Scholar 

  • Storck S, Shukla M, Dimitrov S, Bouvet P (2007) Functions of the histone chaperone nucleolin in diseases. Subcell Biochem 41:125–144

    Article  PubMed  Google Scholar 

  • Sun X, Sun GB, Wang M, Xiao J, Sun XB (2011) Protective effects of cynaroside against H(2) O(2) -induced apoptosis in H9c2 cardiomyoblasts. J Cell Biochem 112:2019–2029

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Fujiwara T, Kanno M (2007) Nucleolar protein Nop25 is involved in nucleolar architecture. Biochem Biophys Res Commun 358:1114–1119

    Article  PubMed  CAS  Google Scholar 

  • Takagi M, Absalon MJ, McLure KG, Kastan MB (2005) Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123:49–63

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Kang R, Xiao W, Jiang L, Liu M, Shi Y, Wang K, Wang H, Xiao X (2007) Nuclear heat shock protein 72 as a negative regulator of oxidative stress (hydrogen peroxide)-induced HMGB1 cytoplasmic translocation and release. J Immunol 178:7376–7384

    PubMed  CAS  Google Scholar 

  • Toko H, Minamino T, Komuro I (2008) Role of heat shock transcriptional factor 1 and heat shock proteins in cardiac hypertrophy. Trends Cardiovasc Med 18:88–93

    Article  PubMed  CAS  Google Scholar 

  • Touyz RM, Briones AM (2011) Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens Res 34:5–14

    Article  PubMed  CAS  Google Scholar 

  • Ugrinova I, Monier K, Ivaldi C, Thiry M, Storck S, Mongelard F, Bouvet P (2007) Inactivation of nucleolin leads to nucleolar disruption, cell cycle arrest and defects in centrosome duplication. BMC Mol Biol 8:66

    Article  PubMed  Google Scholar 

  • Wang KK, Xiao XZ (2007) Endogenous myocardial protection: present questions and prospects. Sheng Li Xue Bao 59:635–642

    PubMed  CAS  Google Scholar 

  • Wojciechowski J, Horky M, Gueorguieva M, Wesierska-Gadek J (2003) Rapid onset of nucleolar disintegration preceding cell cycle arrest in roscovitine-induced apoptosis of human MCF-7 breast cancer cells. Int J Cancer 106:486–495

    Article  PubMed  CAS  Google Scholar 

  • Yao YW, Zhang GH, Zhang YY, Li WD, Wang CH, Yin CY, Zhang FM (2011) Lipopolysaccharide pretreatment protects against ischemia/reperfusion injury via increase of HSP70 and inhibition of NF-kappaB. Cell Stress Chaperones 16:287–296

    Article  PubMed  CAS  Google Scholar 

  • Yenari MA, Liu J, Zheng Z, Vexler ZS, Lee JE, Giffard RG (2005) Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann N Y Acad Sci 1053:74–83

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Bhatia D, Xia H, Castranova V, Shi X, Chen F (2006) Nucleolin links to arsenic-induced stabilization of GADD45alpha mRNA. Nucleic Acids Res 34:485–495

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge the kind gifts of HSF1 knock-out mice and pBR-HSP70 plasmid from Dr. Ivor Benjamin. We thank for Dr. McMillan DR critically reading the manuscript. This work was supported by grants from the Major National Basic Research Program of China (2007CB512007) and Natural Science Foundation of Hunan Province (11JJ2047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangzhong Xiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Deng, G., Chen, G. et al. Heat shock protein 70 inhibits hydrogen peroxide-induced nucleolar fragmentation via suppressing cleavage and down-regulation of nucleolin. Cell Stress and Chaperones 17, 121–130 (2012). https://doi.org/10.1007/s12192-011-0292-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-011-0292-4

Keywords

Navigation