Skip to main content

Adaptation in Algae to Environmental Stress and Ecological Conditions

  • Chapter
  • First Online:
Plant Adaptation Strategies in Changing Environment

Abstract

Algae (including Cyanobacteria) are aquatic organism and ubiquitous in distribution. They are found not only in fresh and marine waterbodies but also on terrestrial habitats such as soil, tree trunk and man-made substrates. As they heavily depend on water, it becomes a limiting factor for their survival. However, algae are found growing abundantly in extreme habitats indicating their adaptation to the harsh environment which we try to explore in this chapter. The response of algae to desiccation stress is widely studied. They produce specialized spores that would remain dormant during harsh period and revive once the favourable conditions return. Their thick cell walls would have further protective layers of chemical substances and also mucilage sheath which helps in the delay of desiccation. Algae produce and accumulate varieties of organic osmolytes that protect them from desiccation, high irradiation and UV light. Algae also have de novo biosynthesis mechanism to manage the damage occurred due to desiccation. Algae occurring in colder habitats have substances in their cells that would withstand sub-zero temperatures. Algae growing in saline habitats accumulate salt and maintain ionic balance with the cellular concentration. Although algae are also found in hot springs, not many studies are available to explain their adaptive strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allaby M (ed) (1992) Algae. The concise dictionary of botany. Oxford University Press, Oxford

    Google Scholar 

  • Badhai J, Ghosh TS, Das S (2015) Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha. India Front Microbiol 6:1–15

    Google Scholar 

  • Bertsch A (1966) CO2 Gaswechsel der Grunalge Apatococcus lobatus. Plant 70:46–72

    Article  CAS  Google Scholar 

  • Bhakta S, Das SK, Adhikary SP (2016) Algal diversity in hot springs of Odisha. Nelumbo 58:157–173

    Article  Google Scholar 

  • Borowitzka M, Hallegraeff GM (2007) Economic importance of algae. In: Algae of Australia: introduction. Algae of Australia. CSIRO Publishing/Australian Biological Resources, Canberra, pp 594–622

    Google Scholar 

  • Delwiche CF, Graham LE, Thomson N (1989) Lignin-like compounds and sporopollenin Coleochaete, an algal model for land plant ancestry. Science 245:99–401

    Article  Google Scholar 

  • Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Williats WGT (2012) The cell walls of green algae: a journey through the evolution and diversity. Front Plant Sci 3(82):1–7

    Google Scholar 

  • Elster J, Degma P, Kovacik L, Valentova L, Sramkova K, Pareira B (2008) Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from Antarctic, Arctic Slovakia. Biology 63:839–847

    Google Scholar 

  • Fernandez-Martin B, Holzinger A, Garcia-plazzaola JL (2016) Photosynthetic strategies of desiccation-tolerant organisms. In: Pessarakli (ed) Handbook of photosynthesis, 3rd edn. CRC Press, Boca Raton, pp 719–737

    Google Scholar 

  • Fernández-Marín B, Kranner I, Sebastián MS, Artetxe U, Laza JM, Vilas JU, Pritchard HW, Nadajaran J, Míguez F, Becerril JM, García-Plazaola JI (2013) Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis. J Exp Bot 64(10):3033–3043

    Google Scholar 

  • Fodorpataki L, Bartha C (2004) Salt stress tolerance of a freshwater green alga under different photon flux densities. Studia Universitatis Babes-Bolyali. Biology 49(2):85–93

    Google Scholar 

  • Fritsch FE (1935) The structure and reproduction of the algae, vol 1. Cambridge University Press, London

    Google Scholar 

  • Fritsch FE (1945) The structure and reproduction of the algae, vol 2. Cambridge University Press, London

    Google Scholar 

  • Gasulla F, Jain R, Barreno E, Guera A, Balbuena TS, Thelen JJ (2013) The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach. Plant Cell Environ 36(7):1363–1378

    Article  CAS  PubMed  Google Scholar 

  • Gray DW, Lewis LA, Cardon ZG (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant Cell Environ 30(10):1240–1255

    Article  CAS  PubMed  Google Scholar 

  • Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063

    Article  PubMed  Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32(2):79–99

    Article  Google Scholar 

  • Halliwell B (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys Lipids 44:327–340

    Article  CAS  Google Scholar 

  • Hawes I (1990) Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctic. Phycologia 29:326–331

    Article  Google Scholar 

  • Herburger K, Lewis LA, Holzinger A (2015) Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta) role of pre akinete formation. Protoplasma 252:571–589

    Article  CAS  PubMed  Google Scholar 

  • Holzinger A, Karsten U (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Rev Front Plant Sci 4(327):1–18

    Google Scholar 

  • Holzinger A, Pichrtova M (2016) Abiotic stress tolerance of Charophyte green algae: new challenges for omics techniques. Rev Front Plant Sci 7(678):1–17

    Google Scholar 

  • Joubert JJ, Rijkenberg FHJ (1971) Parasitic green algae. Ann Rev Phytopathol 9:45–64

    Article  Google Scholar 

  • Kadlubowska JZ (1984) Conjugatophyceae I: chlorophyta VIII – zygnemales. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Susswasserflora von Mitteleuropa, Band 16 eds. Gustav Fisher, Jena, pp 1–532

    Google Scholar 

  • Kaplan F, Lewis LA, Wastian J, Holzinger A (2012) Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of Klebsormidium (Streptophyta). Protoplasma 249:789–804

    Article  PubMed  Google Scholar 

  • Karsten U, Holzinger A (2012) Light temperature and desiccation effects on photosynthetic activity and drought-induced ultra-structural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb Ecol 63:51–63

    Article  CAS  PubMed  Google Scholar 

  • Katz A, Waridel P, Shevchenko A, Pick U (2007) Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by Blue Native Gel Electrophoresis and Nano-LC-MS/MS analysis. Mol Cellul Proteom 6(9):1459–1472

    Article  CAS  Google Scholar 

  • Kroken SB, Graham LE, Cook ME (1996) Occurrence and evolutionary significance of resistant cell walls in charophytes and bryophytes. Am J Bot 83:1241–1254

    Article  Google Scholar 

  • Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delchiche CF (2012) Phylogeny and molecular evolution of green algae. Crit Rev Plant Sci 31:1–46

    Article  Google Scholar 

  • Lesser MP, Stat M, Gates RD (2016) The endosymbiotic dinoflagellates (Symbiodinium sp.) of corals are parasites and mutualists. Coral Reefs 32(3):603–611

    Article  Google Scholar 

  • Lüttge U, Budel B (2010) Resurrection kinetics of photosynthesis in desiccation tolerant terrestrial green algae (Chlorophyta) on tree bark. Plant Biol 123:437–444

    Article  Google Scholar 

  • Lütz C, Seillitzz HK, Meindl U (1997) Physiological and structural changes in the chloroplast of the green alga Micrasterias denticulata induced by UV-B simulation. Plant Ecol 128:54–64

    Article  Google Scholar 

  • McClendon JF (1993) Iodine and goiter with especial reference to the far East. J Biol Chem 102:91–99

    Google Scholar 

  • Morison M, Sheath R (1985) Response to desiccation by Klebsormidium rivulare (Ulotrichales, Chlorophyta) a Rhode Island stream. Phycologia 24:129–145

    Article  CAS  Google Scholar 

  • Nabors MW (2004) Introduction to botany. Pearson Education, San Francisco

    Google Scholar 

  • Nash TH III (ed) (1996) Lichen biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Oliver MJ, Cushman JC, Koster KL (2010) Dehydration tolerance in plants. In: Sunkar R (ed) Plant stress tolerance, Methods in molecular biology, vol 639. Springer, New York, pp 3–24

    Chapter  Google Scholar 

  • Oren A (2000) Salts and brines. In: Whitton BA, Potts M (eds) Ecology of Cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 281–306

    Google Scholar 

  • Oren A (2007) Diversity of organic cosmetic compounds and osmotic adaptation in Cyanobacteria and algae. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Berlin, pp 639–655

    Chapter  Google Scholar 

  • Pichrtova M, Remias D, Lewis L, Holzinger A (2013) Changes in phenolic compounds and cellular ultrastructure of Arctic and Antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. Microbiol Ecol 65:68–83

    Article  CAS  Google Scholar 

  • Prasad BN, Srivastava PN (1965) Thermal algae from Himalaya hot springs. Proc Nat Acad Sci India 31B(1&2):45–53

    Google Scholar 

  • Remias D, Schwaiger S, Aigner S, Leya T, Stuppner H, Lutz C (2012) Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta) an extremophyte living on glaciers. FEMS Microb Ecol 79:638–648

    Article  CAS  Google Scholar 

  • Roach T, Krieger-Liszkay A (2014) Regulation of photosynthetic electron transport and photo inhibition. Curr Protein Pept Sci 15:351–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seckbach J (2007) Algae and cyanobacteria in extreme environments. Springer, Dordrecht

    Book  Google Scholar 

  • Shah MM, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci 7(531):1–28

    CAS  Google Scholar 

  • Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis accumulation and UV protective functions in aquatic organisms. Ann Rev Physiol 64:223–262

    Article  CAS  Google Scholar 

  • Sorensen L, Pettolino FA, Bacic A, Ralph J, Lu F, O’Neill MA (2011) The Charophycean green algae provide insights into the early origins of plant cell walls. Plant J 68:201–211

    Article  PubMed  Google Scholar 

  • Stamenkovic M, Bischof K, Hanelt D (2014) Xanthophyll cycle pool size and composition in several Cosmarium strains (Zygnematophyceae, Streptophyta) are related to their geographic distribution patterns. Protist 165:14–30

    Article  CAS  PubMed  Google Scholar 

  • Stancheva R, Sheath RG, Hall JD (2012) Systematics of the genus Zygnema (Zygnematophyceae, Charophyta) from Californian watersheds. J Phycol 48:409–422

    Article  PubMed  Google Scholar 

  • Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc Lond Ser B Biol Sci 361(1474):1837–1843

    Article  CAS  Google Scholar 

  • Suseela MR, Toppo K (2006) Haematococcus pluvialis – a green alga, richest natural source of astaxanthin. Curr Sci 90(12):1602–1603

    Google Scholar 

  • Vincent WF (2007) Cold tolerance in cyanobacteria and life in the cryosphere. In: Sechbach J (ed) Algae and cyanobacteria in extreme environments. Spinger, Dordrecht, pp 287–301

    Chapter  Google Scholar 

  • Welsh D (2002) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290

    Article  Google Scholar 

  • Wieners PC, Mudimu O, Bilger W (2012) Desiccation induced non-radiative dissipation in isolated green lichen algae. Photosynth Res 113:239–247

    Article  CAS  PubMed  Google Scholar 

  • Yancey P (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 28:2819–2830

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the director of the CSIR-NBRI, Lucknow, for providing infrastructural facilities, to Dr. Siljo Joseph for organizing the pictures, to members of Algology Laboratory for their support and to the Indo-US Science and Technology Forum, New Delhi, for financial support under i-Craft project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeeva Nayaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayaka, S., Toppo, K., Verma, S. (2017). Adaptation in Algae to Environmental Stress and Ecological Conditions. In: Shukla, V., Kumar, S., Kumar, N. (eds) Plant Adaptation Strategies in Changing Environment. Springer, Singapore. https://doi.org/10.1007/978-981-10-6744-0_4

Download citation

Publish with us

Policies and ethics