Skip to main content

Advertisement

Log in

Calnexin overexpression sensitizes recombinant CHO cells to apoptosis induced by sodium butyrate treatment

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Sodium butyrate (NaBu) can enhance the expression of foreign genes in recombinant Chinese hamster ovary (rCHO) cells, but it can also inhibit cell growth and induce cellular apoptosis. In this study, the potential role of calnexin (Cnx) expression in rCHO cells treated with 5 mM NaBu was investigated for rCHO cells producing tumor necrosis factor receptor FC. To regulate the Cnx expression level, a tetracycline-inducible system was used. Clones with different Cnx expression levels were selected and investigated. With regard to productivity per cell (q p), NaBu enhanced the q p by over twofold. Under NaBu treatment, Cnx overexpression further enhanced the q p by about 1.7-fold. However, under NaBu stress, the cells overexpressing Cnx showed a poorer viability profile with a consistent difference of over 25% in the viability when compared to the Cnx-repressed condition. This drop in the viability was attributed to increased apoptosis seen in these cells as evidenced by enhanced poly (ADP-ribose) polymerase cleavage and cytochrome C release. Ca2+ localization staining and subsequent confocal imaging revealed elevated cytosolic Ca2+ ([Ca2+]c) in the Cnx-overexpressing cells when compared to the Cnx-repressed condition, thus endorsing the increased apoptosis observed in these cells. Taken together, Cnx overexpression not only improved the q p of cells treated with NaBu, but it also sensitized cells to apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnaudeau S, Frieden M, Nakamura K, Castelbou C, Michalak M, Demaurex N (2002) Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J Biol Chem 277:46696–46705

    Article  PubMed  CAS  Google Scholar 

  • Bass J, Chiu G, Argon Y, Steiner DF (1998) Folding of insulin receptor monomers is facilitated by the molecular chaperones calnexin and calreticulin and impaired by rapid dimerization. J Cell Biol 141:637–646

    Article  PubMed  CAS  Google Scholar 

  • Chang KH, Kim KS, Kim JH (1999) N-Acetylcysteine increases the biosynthesis of recombinant EPO in apoptotic Chinese hamster ovary cells. Free Radic Res 30:85–91

    Article  PubMed  CAS  Google Scholar 

  • Chotigeat W, Watanapokasin Y, Mahler S, Gray PP (1994) Role of environmental conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO cells. Cytotechnology 15:217–221

    Article  PubMed  CAS  Google Scholar 

  • Chung BS, Jeong YT, Chang KH, Kim JS, Kim JH (2001) Effect of sodium butyrate on glycosylation of recombinant erythropoietin. J Microbiol Biotechnol 11:1087–1092

    CAS  Google Scholar 

  • Chung JY, Lim SW, Hong YJ, Hwang SO, Lee GM (2004) Effect of doxycycline-regulated calnexin and calreticulin expression on specific thrombopoietin productivity of recombinant Chinese hamster ovary cells. Biotechnol Bioeng 85:539–546

    Article  PubMed  CAS  Google Scholar 

  • Cockett MI, Bebbington CR, Yarranton GT (1990) High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology 8:662–667

    Article  PubMed  CAS  Google Scholar 

  • David V, Hochstenbach F, Rajagopalan S, Brenner MB (1993) Interaction with newly synthesized and retained proteins in the endoplasmic reticulum suggests a chaperone function for human integral membrane protein IP90 (calnexin). J Biol Chem 268:9585–9592

    PubMed  CAS  Google Scholar 

  • Delom F, Emadali A, Cocolakis E, Lebrun JJ, Nantel A, Chevet E (2006) Calnexin-dependent regulation of tunicamycin-induced apoptosis in breast carcinoma MCF-7 cells. Cell Death Differ 3:586–596

    Google Scholar 

  • Delom F, Fessart D, Chevet E (2007) Regulation of calnexin sub-cellular localization modulates endoplasmic reticulum stress-induced apoptosis in MCF-7 cells. Apoptosis 12:293–305

    Article  PubMed  CAS  Google Scholar 

  • Fayadat L, Siffroi-Fernandez S, Lanet J, Franc JL (2000) Calnexin and calreticulin binding to human thyroperoxidase is required for its first folding step(s) but is not sufficient to promote efficient cell surface expression. Endocrinology 141:959–966

    Article  PubMed  CAS  Google Scholar 

  • Foyouzi-Youssefi R, Arnaudeau S, Borner C, Kelley WL, Tschopp J, Lew DP, Demaurex N, Krause KH (2000) Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci 97:5723–5728

    Article  PubMed  CAS  Google Scholar 

  • Gorman CM, Howard BH, Reeves R (1983) Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res 11:7631–7648

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Goswami J, Sinskey AJ, Steller H, Stephanopoulos GN (1999) Apoptosis in batch cultures of Chinese hamster ovary cells. Biotechnol Bioeng 62:632–640

    Article  PubMed  CAS  Google Scholar 

  • Gramer MJ, Goochee CF, Chock VY, Brousseau DT, Sliwkowski MB (1995) Removal of sialic acid from a glycoprotein in CHO cell culture supernatant by action of an extracellular CHO cell sialidase. Bio/Technology 13:692–698

    Article  PubMed  CAS  Google Scholar 

  • Hajnoczky G, Davies E, Madesh M (2003) Calcium signaling and apoptosis. Biochem Biophys Res Commun 304:445–454

    Article  PubMed  CAS  Google Scholar 

  • Hammond C, Helenius A (1994) Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266:456–458

    Article  PubMed  CAS  Google Scholar 

  • Hammond C, Braakman I, Helenius A (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A 91:913–917

    Article  PubMed  CAS  Google Scholar 

  • Hebert DN, Foellmer B, Helenius A (1996) Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J 5:2961–2968

    Google Scholar 

  • Hendrick V, Winnepenninckx P, Abdelkafi C, Vandeputte O, Cherlet M, Marique T, Renemann G, Loa A et al (2001) Increased productivity of recombinant tissular plasminogen activator (t-PA) by butyrate and shift of temperature: a cell cycle phases analysis. Cytotechnology 36:71–83

    Article  PubMed  CAS  Google Scholar 

  • Hwang SO, Lee GM (2008) Nutrient deprivation induces autophagy as well as apoptosis in Chinese hamster ovary cell culture. Biotechnol Bioeng 99:678–685

    Article  PubMed  CAS  Google Scholar 

  • Hwang SO, Chung JY, Lee GM (2003) Effect of doxycycline-regulated ERp57 expression on specific thrombopoietin productivity of recombinant CHO cells. Biotechnol Prog 19:179–184

    Article  PubMed  CAS  Google Scholar 

  • Jackson MR, Cohen-Doyle MF, Peterson PA, Williams DB (1994) Regulation of MHC class I transport by the molecular chaperone, Calnexin (p88, IP90). Science 263:384–386

    Article  PubMed  CAS  Google Scholar 

  • Kearse KP, Williams DB, Singer A (1994) Persistence of glucose residues on core oligosaccharides prevents association of TCRa and TCRb with calnexin and results specifically in accelerated degradation of nascent TCRa proteins within the endoplasmic reticulum. EMBO J 13:3678–3686

    PubMed  CAS  Google Scholar 

  • Kim NS, Lee GM (2001) Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production. Biotechnol Bioeng 71:184–193

    Article  CAS  Google Scholar 

  • Kim NS, Lee GM (2002) Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3. Biotechnol Bioeng 78:217–228

    Article  PubMed  CAS  Google Scholar 

  • Kruman I, Guo Q, Mattson MP (1998) Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci Res 51:293–308

    Article  PubMed  CAS  Google Scholar 

  • Laubach VE, Garvey EP, Sherman PA (1996) High-level expression of human inducible nitric oxide synthase in Chinese hamster ovary cells and characterization of the purified enzyme. Biochem Biophys Res Commun 218:802–807

    Article  PubMed  CAS  Google Scholar 

  • Le A, Steiner JL, Ferrell GA, Shaker JC, Sifers RN (1994) Association between calnexin and a secretion-incompetent variant of human a1-antitrypsin. J Biol Chem 269:7514–7519

    PubMed  CAS  Google Scholar 

  • Loo TW, Clarke DM (1994) Prolonged association of temperature-sensitive mutants of human P-glycoprotein with calnexin during biogenesis. J Biol Chem 269:28683–28689

    PubMed  CAS  Google Scholar 

  • Lynch K, Fernandez G, Pappalardo A, Peluso JJ (2000) Basic fibroblast growth factor inhibits apoptosis of spontaneously immortalized granulosa cells by regulating intracellular free calcium levels through a protein kinase Cdelta-dependent pathway. Endocrinology 141:4209–4217

    Article  PubMed  CAS  Google Scholar 

  • Maréchal A, Tanguay PL, Callejo M, Guérin R, Boileau G, Rokeach LA (2004) Cell viability and secretion of active proteins in Schizosaccharomyces pombe do not require the chaperone function of calnexin. Biochem J 380(Pt 2):441–448

    Article  PubMed  Google Scholar 

  • Martikainen P, Kyprianou N, Tucker RW, Isaacs JT (1991) Programmed death of nonproliferating androgen-independent prostatic cancer cells. Cancer Res 51:4693–4700

    PubMed  CAS  Google Scholar 

  • Meldolesi J, Pozzan T (1998) The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 23:10–14

    Article  PubMed  CAS  Google Scholar 

  • Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M (1999) Calreticulin: one protein, one gene, many functions. Biochem J 344:281–292

    Article  PubMed  CAS  Google Scholar 

  • Michalak M, Robert Parker JM, Opas M (2002) Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32:269–278

    Article  PubMed  CAS  Google Scholar 

  • Mimura Y, Lund J, Church S, Dong S, Li J, Goodall M, Jefferis R (2001) Butyrate increases production of human chimeric IgG in CHO-K1 cells whilst maintaining function and glycoform profile. J Immunol Methods 247:205–216

    Article  PubMed  CAS  Google Scholar 

  • Mohan C, Park SH, Chung JY, Lee GM (2007) Effect of doxycycline-regulated protein disulfide isomerase expression on the specific productivity of recombinant CHO cells: Thrombopoietin and antibody. Biotechnol Bioeng 983:611–615

    Article  Google Scholar 

  • Moore A, Donahue CJ, Hooley J, Stocks DL, Bauer KD, Mather JP (1995) Apoptosis in CHO cell batch cultures: examination by flow cytometry. Cytotechnology 17:1–11

    Article  CAS  Google Scholar 

  • Nakamura K, Bossy-Wetzel E, Burns K, Fadel MP, Lozyk M, Goping IS, Opas M, Bleackley RC et al (2000) Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol 150:731–740

    Article  PubMed  CAS  Google Scholar 

  • Okazaki Y, Ohno H, Takase K, Ochiai T, Saito T (2000) Cell surface expression of calnexin, a molecular chaperone in the endoplasmic reticulum. J Biol Chem 275:35751–35758

    Article  PubMed  CAS  Google Scholar 

  • Oster T, Thioudellet C, Chevalot I, Masson C, Wellman M, Marc A, Siest G (1993) Induction of recombinant human gamma-glutamyl transferase by sodium butyrate in transfected V79 and CHO Chinese hamster cells. Biochem Biophys Res Commun 193:406–412

    Article  PubMed  CAS  Google Scholar 

  • Ou W-J, Cameron PH, Thomas DY, Bergeron JJM (1993) Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364:771–776

    Article  PubMed  CAS  Google Scholar 

  • Palermo DP, DeGraaf ME, Marotti KR, Rehberg E, Post LE (1991) Production of analytical quantities of recombinant proteins in Chinese hamster ovary cells using sodium butyrate to elevate gene expression. J Biotechnol 19:35–48

    Article  PubMed  CAS  Google Scholar 

  • Parekh RB (1991) Mammalian cell gene expression: protein glycosylation. Curr Opin Biotechnol 2:730–734

    Article  PubMed  CAS  Google Scholar 

  • Pind S, Riordan JR, Williams DB (1994) Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 269:12784–12788

    PubMed  CAS  Google Scholar 

  • Pinton P, Ferrari D, Magalhães P, Schulze-Osthoff K, Di Virgilio F, Pozzan T, Rizzuto R (2000) Reduced loading of intracellular Ca (2+) stores and downregulation of capacitative Ca (2+) influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–862

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G, Magalhães PJ, Di Virgilio F, Pozzan T (2003) Calcium and apoptosis: facts and hypotheses. Oncogene 22:8619–8627

    Article  PubMed  CAS  Google Scholar 

  • Roderick HL, Lechleiter JD, Camacho P (2000) Cytosolic phosphorylation of calnexin controls intracellular Ca(2+) oscillations via an interaction with SERCA2b. J Cell Biol 149:1235–1248

    Article  PubMed  CAS  Google Scholar 

  • Siffroi-Fernandez S, Giraud A, Lanet J, Franc JL (2002) Association of the thyrotropin receptor with calnexin, calreticulin and BiPEffects on the maturation of the receptor. Eur J Biochem 269:4930–4937

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Al-Rubeai M, Gregory CD, Emery AN (1994) Cell death in bioreactors: a role for apoptosis. Biotechnol Bioeng 44:720–726

    Article  PubMed  CAS  Google Scholar 

  • Sung YH, Lee GM (2005) Enhanced human thrombopoietin production by sodium butyrate addition to serum-free suspension culture of bcl-2-overexpressing CHO cells. Biotechnol Prog 21:50–57

    Article  PubMed  CAS  Google Scholar 

  • Sung YH, Song YJ, Lim SW, Chung JY, Lee GM (2004) Effect of sodium butyrate on the production, heterogeneity and biological activity of human thrombopoietin by recombinant Chinese hamster ovary cells. J Biotechnol 112:323–335

    Article  PubMed  CAS  Google Scholar 

  • Tector M, Salter RD (1995) Calnexin influences folding of human class I histocompatibility proteins but not their assembly with B2-microglobulin. J Biol Chem 270:19638–19642

    Article  PubMed  CAS  Google Scholar 

  • Tomassini B, Malisan F, Franchi L, Nicolò C, Calvo GB, Saito T, Testi R (2004) Calnexin suppresses GD3 synthase-induced apoptosis. FASEB J 18:1553–1555

    PubMed  CAS  Google Scholar 

  • Tombal B, Denmeade SR, Isaacs JT (1999) Assessment and validation of a microinjection method for kinetic analysis of [Ca2+]i in individual cells undergoing apoptosis. Cell Calcium 25:19–28

    Article  PubMed  CAS  Google Scholar 

  • Vassilakos A, Cohen-Doyle MF, Peterson PA, Jackson MR, Williams DB (1996) The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J 15:1495–1506

    PubMed  CAS  Google Scholar 

  • Wada I, Rindress D, Cameron PH, Ou W, Doherty JJ, Louvard D, Bell AW, Dignard D et al (1991) SSRa and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem 226:19599–19610

    Google Scholar 

  • Walter L, Hajnóczky G (2005) Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr 37:191–206

    Article  PubMed  CAS  Google Scholar 

  • Wurm FM, Petropoulos CJ, O’Connor JV (1996) Manufacture of proteins based on recombinant Chinese hamster ovary cells: assessment of genetic issues and assurance of consistency and quality. In: Schmidt ER, Hankeln T (eds) Transgenic organisms and biosafety. Springer, Berlin, p 546

    Google Scholar 

  • Yoon SK, Hong JK, Lee GM (2004) Effect of simultaneous application of stressful culture conditions on specific productivity and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Prog 20:1293–1296

    Article  PubMed  CAS  Google Scholar 

  • Zirpel L, Lippe WR, Rubel EW (1998) Activity-dependent regulation of [Ca2+]i in avian cochlear nucleus neurons: roles of protein kinases A and C and relation to cell death. J Neurophysiol 79:2288–2302

    PubMed  CAS  Google Scholar 

  • Zuppini A, Groenendyk J, Cormack LA, Shore G, Opas M, Bleackley RC, Michalak M (2002) Calnexin Deficiency and Endoplasmic Reticulum Stress-Induced Apoptosis. Biochemistry 41:2850–2858

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Min Soo Kim and Ms. Jane Koo for their help. This research was supported in part by grants from the Ministry of Commerce, Industry, and Energy, Daejeon city (Bio/RIS program) and the Ministry of Education (Brain Korea 21 Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyun Min Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan, C., Lee, G.M. Calnexin overexpression sensitizes recombinant CHO cells to apoptosis induced by sodium butyrate treatment. Cell Stress and Chaperones 14, 49–60 (2009). https://doi.org/10.1007/s12192-008-0054-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0054-0

Keywords

Navigation