Skip to main content
Log in

A characteristic difference method for the variable-order fractional advection-diffusion equation

  • Computational mathematics
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider a variable-order fractional advection-diffusion equation with a nonlinear source term (VOFADE-NST) on a finite domain. Combining the characteristic method and the finite difference method, a characteristic finite difference method for solving the VOFADE-NST is presented. Its stability and convergence are analyzed. This new method is shown to be more efficient and superior to the standard finite difference method. Numerical experiments are carried out and the results demonstrate the effectiveness of theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  2. Chaves, A.: Fractional diffusion equation to describe Lévy flights. Phys. Lett. A 239, 13–16 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, C.-M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12, 692–703 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Douglas, J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in R d. Numer. Methods Partial Differ. Equ. 23, 256–281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fujita, Y.: Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27, 309–321 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Golbabai, A., Sayevand, K.: On generalized fractional flux advection-dispersion equation and Caputo derivative. Int. J. Math. Comput. Sci. 2, 425–430 (2011)

    Google Scholar 

  9. Gorenflo, R., Iskenderov, A., Luchko, Yu.: Mapping between solutions of fractional diffusion-wave equations. Fract. Calc. Appl. Math. 3(1), 75–86 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Jacob, N., Leopold, H.-G.: Pseudo differential operators with variable order of differentiation generating Feller semigroup. Integral Equ. Oper. Theory 17, 544–553 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kikuchi, K., Negoro, A.: On Markov processes generated by pseudodifferential operator of variable order. Osaka J. Math. 34, 319–335 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Komatsu, T.: On stable-like processes. In: Watanabe, S., Fukushima, M., Prohorov, Y.V., Shiryaev, A.N. (eds.) 7th Japan-Russian Symposium on Probability Theory and Mathematical Statistics, pp. 210–219. World Scientific, Singapore (1996)

    Google Scholar 

  13. Leopold, H.G.: Embedding of function spaces of variable order of differentiation. Czechoslov. Math. J. 49, 633–644 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lorenzo, C.F., Hartley, T.T.: Initialization, conceptualization, and application in the generalized fractional calculus. NASA Technical Publication 98-208415, NASA, Lewis Research Center (1998)

  17. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. de Gruyter Studies in Mathematics, vol. 43. de Gruyter, Berlin (2012)

    MATH  Google Scholar 

  19. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  22. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314, 749–755 (2002)

    Article  MATH  Google Scholar 

  23. Roop, J.P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2. J. Comput. Appl. Math. 193, 243–268 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ruiz-Medina, M.D., Anh, V.V., Angulo, J.M.: Fractional generalized random fields of variable order. Stoch. Anal. Appl. 22, 775–799 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Samko, S.G.: Fractional integration and differentiation of variable order. Anal. Math. 21, 213–236 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1, 277–300 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schumer, R., Benson, D.A., Meerschaert, M.M., Wheatcraft, S.W.: Eulerian derivation of the fractional advection-dispersion equation. J. Contam. Hydrol. 48, 69–88 (2001)

    Article  Google Scholar 

  28. Simth, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Clarendon, Oxford (1985)

    Google Scholar 

  29. Soon, C.M., Coimbra, F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14, 378–389 (2005)

    Article  MATH  Google Scholar 

  30. Sousa, E.: Finite difference approximations for a fractional advection diffusion problem. J. Comput. Phys. 228, 4038–4054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Su, L., Wang, W., Wang, H.: A characteristic difference method for the transient fractional convection-diffusion equations. Appl. Numer. Math. 61, 946–960 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Physica A 388, 4586–4592 (2009)

    Article  Google Scholar 

  33. Wang, K., Wang, H.: A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water Resour. 34(7), 810–816 (2011)

    Article  Google Scholar 

  34. Yong, Z., Benson, D.A., Meerschaert, M.M., Scheffler, H.-P.: On using random walks to solve the space-fractional advection-dispersion equations. J. Stat. Phys. 123, 89–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou, L., Selim, H.M.: Application of the fractional advection-dispersion equation in porous media. Soil Sci. Soc. Am. J. 67, 1079–1084 (2003)

    Article  Google Scholar 

  36. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China grant 11001090 and 11101344, the Natural Science Foundation of Huaqiao University grant 08BS507, the Australian Research Council grant DP120103770, and the Natural Science Foundation of Fujian province grant 2010J05009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Appendix

Appendix

The implicit finite difference method for the VOFADE-NST developed in [36] is given by

where \(\mu_{i}^{n}=\upsilon_{i}^{n}\tau h^{-1}\), \(\gamma _{i,n}^{(1)}=\kappa_{i}^{n}c_{+,i}^{n}\tau h^{-\alpha_{i+1}^{n}}\), \(\gamma_{i,n}^{(2)}=\kappa_{i}^{n}c_{-,i}^{n}\tau h^{-\alpha_{i-1}^{n}}\) and \(g_{i,n}^{(j)}=g_{\alpha_{i}^{n}}^{(j)}\).

This scheme was proved to be unconditionally stable and convergent, and the convergence order is O(τ+h).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, S., Liu, F., Anh, V. et al. A characteristic difference method for the variable-order fractional advection-diffusion equation. J. Appl. Math. Comput. 42, 371–386 (2013). https://doi.org/10.1007/s12190-012-0642-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-012-0642-0

Keywords

Mathematics Subject Classification

Navigation