Skip to main content
Log in

Second-Order Finite Difference/Spectral Element Formulation for Solving the Fractional Advection-Diffusion Equation

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

The main aim of this paper is to analyze the numerical method based upon the spectral element technique for the numerical solution of the fractional advection-diffusion equation. The time variable has been discretized by a second-order finite difference procedure. The stability and the convergence of the semi-discrete formula have been proven. Then, the spatial variable of the main PDEs is approximated by the spectral element method. The convergence order of the fully discrete scheme is studied. The basis functions of the spectral element method are based upon a class of Legendre polynomials. The numerical experiments confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbaszadeh, M.: Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation. Appl. Math. Lett. 88, 179–185 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Abbaszadeh, M., Dehghan, M.: An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer. Algor. 75(1), 173–211 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Abbaszadeh, M., Dehghan, M.: Numerical and analytical investigations for neutral delay fractional damped diffusion-wave equation based on the stabilized interpolating element free Galerkin (IEFG) method. Appl. Numer. Math. 145, 488–506 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Abdelkawy, M., Zaky, M., Bhrawy, A., Baleanu, D.: Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model. Rom. Rep. Phys. 67(3), 773–791 (2015)

    Google Scholar 

  5. Bhrawy, A.H., Baleanu, D.: A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection-diffusion equations with variable coefficients. Rep. Math. Phys. 72, 219–233 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Bhrawy, A., Zaky, M.: An improved collocation method for multi-dimensional space-time variable-order fractional Schrödinger equations. Appl. Numer. Math. 111, 197–218 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Bhrawy, A.H., Zaky, M.A., Machado, J.A.T.: Numerical solution of the two-sided space-time fractional telegraph equation via Chebyshev tau approximation. J. Optim. Theory Appl. 174(1), 321–341 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Bu, W., Tang, Y., Wu, Y., Yang, J.: Crank–Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh–Nagumo monodomain model. Appl. Math. Comput. 257, 355–364 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Bu, W., Tang, Y., Wu, Y., Yang, J.: Finite difference/finite element method for two-dimensional space and time fractional Bloch–Torrey equations. J. Comput. Phys. 293, 264–279 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  11. Chen, C.-M., Liu, F., Anh, V., Turner, I.: Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term. Appl. Math. Comput. 217(12), 5729–5742 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Dehghan, M., Abbaszadeh, M.: Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis. Appl. Numer. Math. 119, 51–66 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Dehghan, M., Abbaszadeh, M.: Error estimate of finite element/finite difference technique for solution of two-dimensional weakly singular integro-partial differential equation with space and time fractional derivatives. J. Comput. Appl. Math. 356, 314–328 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Dehghan, M., Sabouri, M.: A spectral element method for solving the Pennes bioheat transfer equation by using triangular and quadrilateral elements. Appl. Math. Model. 36, 6031–6049 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Dehghan, M., Sabouri, M.: A Legendre spectral element method on a large spatial domain to solve the predator-prey system modeling interacting populations. Appl. Math. Model. 37, 1028–1038 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Dehghan, M., Abbaszadeh, M., Deng, W.: Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 73, 120–127 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Deng, K., Chen, M., Sun, T.: A weighted numerical algorithm for two and three dimensional two-sided space fractional wave equations. Appl. Math. Comput. 257, 264–273 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Deville, M.O., Fischer, P.F., Fischer, P.F., Mund, E., et al.: High-Order Methods for Incompressible Fluid Flow, vol. 9. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  19. Ding, H.: A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation. Appl. Numer. Math. 135, 30–46 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Ding, H., Li, C.: High-order algorithms for Riesz derivative and their applications (iii). Fract. Calc. Appl. Anal. 19(1), 19–55 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Ding, H., Li, C.P.: A high-order algorithm for time-Caputo-tempered partial differential equation with Riesz derivatives in two spatial dimensions. J. Sci. Comput. 80, 81–109 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Ding, H., Li, C., Chen, Y.: High-order algorithms for Riesz derivative and their applications. J. Comput. Phys. 293, 218–237 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Fakhar-Izadi, F., Dehghan, M.: The spectral methods for parabolic Volterra integro-differential equations. J. Comput. Appl. Math. 235, 4032–4046 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Giraldo, F.X.: Strong and weak Lagrange–Galerkin spectral element methods for the shallow water equations. Comput. Math. Appl. 45, 97–121 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Hafez, R.M., Youssri, Y.H.: Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation. Comput. Appl. Math. 37, 5315–5333 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Khader, M.M., Sweilam, N.H.: Approximate solutions for the fractional advection-dispersion equation using Legendre pseudo-spectral method. Comput. Appl. Math. 33, 739–750 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015)

    MATH  Google Scholar 

  29. Li, C.P., Zeng, F., Liu, F.: Spectral approximations to the fractional integral and derivative. Fract. Calcul. Appl. Anal. 15, 383–406 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Li, H., Cao, J., Li, C.: High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations. J. Comput. Appl. Math. 299, 159–175 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Li, M., Huang, C., Ming, W.: Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations. Comput. Appl. Math. 37, 2309–2334 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Li, C., Deng, W., Zhao, L.: Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete Cont. Dyn. Syst. B 24(4), 1989–2015 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80, 1369–1396 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Maerschalck, B. D.: Space-time least-squares spectral element method for unsteady flows application and valuation linear and non-linear hyperbolic scalar equations, Master Thesis, Department of Aerospace Engineering at Delft University of Technology (February 28, 2003)

  36. Moghaddam, B.P., Tenreiro Machado, J.A., Morgado, M.L.: Numerical approach for a class of distributed order time fractional partial differential equations. Appl. Numer. Math. 136, 152–162 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Osman, S.A., Langlands, T.A.M.: An implicit Keller Box numerical scheme for the solution of fractional subdiffusion equations. Appl. Math. Comput. 348, 609–626 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Pandey, P., Kumar, S., Das, S.: Approximate analytical solution of coupled fractional order reaction-advection-diffusion equations. Euro. Phys. J. Plus 134, 364 (2019). https://doi.org/10.1140/epjp/i2019-12727-6

    Article  Google Scholar 

  39. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer-Verlag, New York (1997)

    MATH  Google Scholar 

  40. Shen, J.: Efficient spectral-Galerkin method i. direct solvers for second- and fourth-order equations by using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (2020). https://doi.org/10.1137/0915089

    Article  MATH  Google Scholar 

  41. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84(294), 1703–1727 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Wang, T., Guo, B., Zhang, L.: New conservative difference schemes for a coupled nonlinear Schrödinger system. Appl. Math. Comput. 217, 1604–1619 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Wu, X., Deng, W., Barkai, E.: Tempered fractional Feynman–Kac equation, arXiv preprint arXiv:1602.00071

  45. Yuttanan, B., Razzaghi, M.: Legendre wavelets approach for numerical solutions of distributed order fractional differential equations. Appl. Math. Model. 70, 350–364 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Zaky, M.A., Ameen, I.G.: A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and Volterra–Fredholm integral equations with smooth solutions. Numer. Algor. (2019). https://doi.org/10.1007/s11075-019-00743-5

    Article  MATH  Google Scholar 

  47. Zaky, M., Baleanu, D., Alzaidy, J., Hashemizadeh, E.: Operational matrix approach for solving the variable-order nonlinear Galilei invariant advection-diffusion equation. Adv. Differ. Equ. 2018(1), 102 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. 293, 312–338 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Zeng, F., Ma, H., Zhao, T.: Alternating direction implicit Legendre spectral element method for Schrödinger equations. J. Shanghai Univ. (Nat. Sci. Edition) 60(6), 724–727 (2011)

    MATH  Google Scholar 

  51. Zhang, G., Huang, C., Li, M.: A mass-energy preserving Galerkin FEM for the coupled nonlinear fractional Schrödinger equations. Euro. Phys. J. Plus 133, 155 (2018). https://doi.org/10.1140/epjp/i2018-11982-3

    Article  Google Scholar 

  52. Zheng, M., Liu, F., Turner, I., Anh, V.: A novel high-order space-time spectral method for the time fractional Fokker–Planck equation. SIAM J. Sci. Comput. 37, A701–A724 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Zhu, W., Kopriva, D.A.: A spectral element method to price European options, I. Single asset with and without jump diffusion. J. Sci. Comput. 39, 222–243 (2009)

    MathSciNet  MATH  Google Scholar 

  54. Zhu, W., Kopriva, D.A.: A spectral element approximation to price European options with one asset and stochastic volatility. J. Sci. Comput 42, 426–446 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the two reviewers for carefully reading this paper and for their comments and suggestions which have highly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Abbaszadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaszadeh, M., Amjadian, H. Second-Order Finite Difference/Spectral Element Formulation for Solving the Fractional Advection-Diffusion Equation. Commun. Appl. Math. Comput. 2, 653–669 (2020). https://doi.org/10.1007/s42967-020-00060-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-020-00060-y

Keywords

Mathematics Subject Classification

Navigation