Skip to main content
Log in

Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Rehim, E.A.: Modelling and Simulating of Classical and Non-Classical Diffusion Processes by Random Walks. Mensch & Buch Verlag (2004). ISBN 3–89820–736–6. http://www.diss.fu-berlin.de/2004/168/index.html

  2. Anh, V.V., Mcvinish, R.: Fractional differential equations driven by Lévy noise. J. Appl. Math. Stoch. Anal. 16(2), 97–119 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Atanackovic, T.M., Pilipovic, S., Zorica, D.: A diffusion wave equation with two fractional derivatives of different order. J. Phys. A Math. Theory 40, 5319–5333 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baeumer, B., Benson, D.A., Meerschaert, M.M., Wheatcraft, S.W.: Subordinated advection-dispersion equation for contaminant transport. Water Resour. Res. 37(6), 1543–1550 (2001)

    Article  Google Scholar 

  5. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)

    Article  Google Scholar 

  6. Chang, F.X., Chen, J., Huang, W.: Anomalous diffusion and fractional advection-diffusion equation. Acta Phys. Sinica 54(3), 1113–1117 (2005)

    Google Scholar 

  7. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129/1–7 (2002)

    Article  Google Scholar 

  8. Chechkin, A.V., Gorenflo, R., Sokolov, I.M., Gonchar, V.Yu.: Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 6, 259–279 (2002)

    MathSciNet  Google Scholar 

  9. Gorenflo, R., Abdel-Rehim, E.A.: Convergence of the Grünwald-Letnikov scheme for time-fractional diffusion. J. Comput. Appl. Math. 205, 871–881 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gorenflo, R., Luchko Yuand Mainardi, F.: Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118, 175–191 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gorenflo, R., Mainardi, F.: Approximation of Lévy-Feller diffusion by random walk. J. Anal. Appl. (ZAA) 18, 231–246 (1999)

    MATH  MathSciNet  Google Scholar 

  12. Gorenflo, R., Mainardi, F.: Simply and multiply scaled diffusion limits for continuous time random walks. In: Benkadda, S., Leoncini, X., Zaslavsky, G. (eds.) IOP (Institute of Physics) Jour. of Physics: Conference Series, vol 7, pp. 1–16 (2005). Proceedings of the International Workshop on Chaotic Transport and Complexity in Fluids and Plasmas, Carry Le Rouet (France) 20–25 June 2004

  13. Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Discrete random walk models for space-time fractional diffusion. Chem. Phys. 284, 521–541 (2002)

    Article  Google Scholar 

  14. Huang, F., Liu, F.: The fundamental solution of the space-time fractional advection-dispersion equation. J. Appl. Math. Comput. 18, 339–350 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  16. Lenzi, E.K., Mendes, R.S., Kwok Sau, Fa.: Solutions for a fractional nonlinear diffusion equation: Spatial time dependent diffusion coefficient and external forces. J. Math. Phys. 45, 3444–3452 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lin, Y., Xu, C.: Finte difference/spectral approximations for the time fractional diffusion equations. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liu, F., Anh, V., Turner, I., Zhuang, P.: Time fractional advection dispersion equation. J. Appl. Math. Comput. 13, 233–245 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Liu, Q., Liu, F., Turner, I., Anh, V.: Approximation of the Levy-Feller advection-dispersion process by random walk and finite difference method. J. Phys. Comp. 222, 57–70 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mainardi, F., Tomirotti, M.: Seismic pulse propagation with constant Q and stable probability distributions. Ann. Geofis. 40, 1311–1328 (1997)

    Google Scholar 

  21. Mainardi, F., Luchko, Yu., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)

    MATH  MathSciNet  Google Scholar 

  22. Mainardi, F., Pagnini, G., Gorenflo, R.: Probability distributions as solutions to fractional diffusion equations. In: Barndorff-Nielsen, O.E. (ed.) Mini-Proceedings of the 2nd MaPhySto Conference on Lévy Processes: Theory and Applications, pp. 197–205. Department of Mathematics, University of Aarhus, Denmark, 21–25 January 2002. ISSN 1398-5957

  23. Mainardi, F., Mura, A., Pagnini, G., Gorenflo, R.: Time-fractional diffusion of distributed order. J. Vib. Control (2008, in press). E-print http://arxiv.org/abs/cond-mat/0701132

  24. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  27. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  28. Pagnini, G., Mainardi, F.: Evolution equations of the probabilistic generalization of the Voigt profile function. Math. Phys. 9 p. (2007). E-print http://arxiv.org/abs/0711.4246

  29. Paradisi, P., Cesari, R., Mainardi, F., Tampieri, F.: The fractional Fick’s law for non-local transport processes. Physica A 293, 130–142 (2001)

    Article  MATH  Google Scholar 

  30. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  31. Saichev, A., Zaslavsky, G.: Fractional kinetic equations: solutions and applications. Chaos 7, 753–764 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  33. Sokolov, I.M., Chechkin, A.V., Klafter, J.: Distributed-order fractional kinetics. Acta Phys. Pol. B 35, 1323–1341 (2004)

    Google Scholar 

  34. Zaslavsky, G.M.: Topological Aspects of the Dynamics of Fluids and Plasmas, p. 481. Kluwer Academic, Dordrecht (1992)

    MATH  Google Scholar 

  35. Zaslavsky, G.M.: Physica D 76, 110 (1994)

    Article  MathSciNet  Google Scholar 

  36. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zhang, S.Q.: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electr. J. Differ. Equ. 36, 1–12 (2006)

    Article  Google Scholar 

  38. Zhuang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22, 87–99 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J. Numer. Anal. 46(2), 1079–1095 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, S., Liu, F. & Anh, V. Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order. J. Appl. Math. Comput. 28, 147–164 (2008). https://doi.org/10.1007/s12190-008-0084-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-008-0084-x

Keywords

Mathematics Subject Classification (2000)

Navigation