Skip to main content

Advertisement

Log in

Temporary stabilization of unstable spine fractures

  • Motion Preserving Spine Surgery (C Kepler, section editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

We will review the recent literature concerning the necessity of supplemental fusion to spinal instrumentation and discuss if temporal spinal fixation is a viable option for the treatment of unstable spine fractures. Advancements in minimally invasive techniques offer an alternative approach to traditional open stabilization for unstable spine fractures. The use of minimally invasive surgery offers many advantages concerning operative morbidly; fusion is not utilized and instrumentation can be removed in a delayed fashion.

Recent Findings

There are limited differences in amount of correction loss over time, and multiple studies report equivocal to superior results in patient’s functional outcomes when comparing temporary internal stabilization to long segment instrumentation with fusion. Removal of implants can restore segmental motion.

Summary

Review of the literature demonstrates that temporary internal stabilization for unstable fractures is a viable option. Close clinical and radiographic follow-up is recommended to avoid delayed spinal deformity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hu R, Mustard CA, Burns C. Epidemiology of incident of spinal fractures in a complete population. Spine. 1996;21:492–9.

    Article  CAS  PubMed  Google Scholar 

  2. Leucht P, Fishcer K, Muhr G, Mueller. Epidemiology of traumatic spine fractures. Injury. 2009;40:166–72.

    Article  PubMed  Google Scholar 

  3. Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine. 1983;8:817–31.

    Article  CAS  PubMed  Google Scholar 

  4. Vaccaro A, Lehman R, Hurlbert R, et al. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine. 2005;30(20):2325–33.

    Article  PubMed  Google Scholar 

  5. Aebi, M. Thalgott J, Webb J. AO ASIF Principles in Spine Surgery. Springer. 1988:20–41.

  6. Hitchon P, Torner J, Haddad S, Follett K. Management options in thoracolumbar burst fractures. Surg Neurol. 1998;49:619–26.

    Article  CAS  PubMed  Google Scholar 

  7. Bailey C, Dvorak M, Thomas K, Boyd M, Paquett S, Kwon B, France J, Gurr K, Bailey S, Fisher C. Comparison of the thoracolumbosacral orthosis and no orthosis for the treatment of thoracolumbar burst fractures: interim analysis of a multicenter randomized clinical equivalence trial. J Neurosurg, Spine. 2009;11(3):295–303.

    Article  Google Scholar 

  8. Wood K, Butterman G, Mehbod A, Garvey T, Jhanjee R, Sechriest V. Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit. J of Bone Joint Surg Am. 2003;85(5):773–81.

    Article  Google Scholar 

  9. Gillespie KA, Dickey JP. Biomechanical role of lumbar spine ligaments in flexion and extension: determination using a parallel linkage robot and a porcine model. Spine. 2004;29:1208–16. doi:10.1097/00007632-200406010-00010.

    Article  PubMed  Google Scholar 

  10. McAfee PC, Yuan HA, Fredrickson BE, Lubicky JP. The value of computed tomography in thoracolumbar fractures. An analysis of one hundred consecutive cases and a new classification. J Bone Joint Surg Am. 1983;65:461–73.

    Article  CAS  PubMed  Google Scholar 

  11. Benson DR, Burkus JK, Montesano PX, Sutherland TB, McLain RF. Unstable thoracolumbar and lumbar burst fractures treated with the AO fixateur interne. J Spinal Disord. 1992;5:335–43.

    Article  CAS  PubMed  Google Scholar 

  12. Kim BG, Dan JM, Shin DE. Treatment of thoracolumbar fracture. Asian Spine J. 2015;9(1):133–46.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roy-Camille R, Demeulenaere C. Osteo- synthese du rachis dorsal, lombaire et lombosacree par plaque metalliques vissees dans les pedicles vertebraux et les apophyses articulaires. Presse Med. 1970;78:1447–8.

    CAS  PubMed  Google Scholar 

  14. Roy-Camille R, Sailant G, Berteaux D, Salgodo V. Osteosynthesis of thoracolumbar spine fractures with metal plates screwed through the vertebral pedicles. ReconstrSurgTraumatol. 1976;15:2.

    CAS  Google Scholar 

  15. Fourney DR, Dettori JR, Norvell DC, Dekutoski MB. Does minimal access tubular spine surgery increase or decrease complications in spinal decompression or fusion? Spine. 2010;35(9S):S57–65.

    Article  PubMed  Google Scholar 

  16. O’Tool JE, Eichholz KM, Fessler RG. Surgical site infections rates after minimally invasive spinal surgery. J Neurosurg Spine. 2009;11:471–6.

    Article  Google Scholar 

  17. Arts M, Brand R, van der Kallen B, Nijeholt GL, Peul W. Does minimally invasive lumbar disc surgery result in less muscle injury than conventional surgery? A randomized controlled trial. Eur Spine J. 2011;20(1):51–7.

    Article  PubMed  Google Scholar 

  18. • Zhao QM, Gu XF, Yang HL, Liu ZT. Surgical outcome of posterior fixation, including fractured vertebra, for thoracolumbar fractures. Neurosciences. 2015;20(4):362–267. Recent review article that reviews the treatments and outcomes of spinal fractures

    Article  PubMed  PubMed Central  Google Scholar 

  19. •• Chou PH, Ma HL, Wang ST, et al. Fusion may not be a necessary procedure for surgically treated burst fractures of the thoracolumbar and lumbar spines: a follow-up of at least ten years. J Bone Joint Surg Am. 2014;96:1724–31. Prospective randomized trial with at least 10-year follow-up. No statistically significant differences in clinical or radiographic outcomes in patients receiving temporary stabilization versus fusion

    Article  PubMed  Google Scholar 

  20. • Jeon CH, Lee HD, Lee YS, Seo JH, Chung NS. Is it beneficial to remove the pedicle screw instrument after successful posterior fusion of thoracolumbar burst fractures? Spine (Phila Pa 1976). 2015;40(11):E627–33. doi:10.1097/BRS.0000000000000870. Recent prospective study that argues that patient had improved clinical outcome once the instrumentation is removed?

    Article  Google Scholar 

  21. • Kim Y-M, Kim D-S, Choi E-S, Shon HC, Park KL, Cho BK, Jeong JJ, Cha YC, Park JK. Nonfusion method in thoracolumbar and lumbar spinal fractures. Spine. 2011;36(2):170–6. All patients in this study had documented posterior-ligamentous-complex disruption and underwent temporary stabilization with good clinical results

    Article  PubMed  Google Scholar 

  22. •• Kim HS, Kim SW, Ju C, Wang HS, Lee SM, Kim DM. Implant removal after percutaneous short segment fixation for thoracolumbar burst fracture: does it preserve motion. J Korean Neurosurg Soc. 2014;55:73–7. Recent article that supports maintained spinal mobility after instrumentation is removed

    Article  PubMed  PubMed Central  Google Scholar 

  23. • Axelsson P, Stromqvist B. Can implant removal restore mobility after fracture of the thoracolumbar segment? Acta Orthop. 2016;87(5):511–5. Prospective study that documents preserved spinal mobility once implants are removed

    Article  PubMed  PubMed Central  Google Scholar 

  24. • Toyone T, Ozawa T, Inada K, Shirahata T, Shiboi R, Watanabe A, et al. Short-segment fixation without fusion for thoracolumbar burst fractures with neurological deficit can preserve thoracolumbar motion without resulting disc degeneration. Spine. 2013;38:1482–90. Study with 10-year follow-up that showed that segmental motion was maintained in flexion/extension after hardware removal

    Article  PubMed  Google Scholar 

  25. Baaj AA, Reyes PM, Yaqoobi AS, et al. Biomechanical advantage of the index-level pedicle screw in unstable thoracolumbar junction fractures. Journal of Neurosurgery. Spine. 2011;14:192–7.

    PubMed  Google Scholar 

  26. Tezeren G, Kuru I. Posterior fixation of thoracolumbar burst fracture: short-segment pedicle fixation versus long-segment instrumentation. J Spinal Disord Tech. 2005;18:485–8.

    Article  PubMed  Google Scholar 

  27. • Kocanli O, Komur B, Duymus TM, Giclu B, Yilmaz B. Ten-year follow-up results of posterior instrumentation without fusion for traumatic thoracic and lumbar spine fractures. J Orthop. 2016;13:301–5. Recent article that showed that the loss of correction concerning segmental kyphosis and vertebral angle are no different between temporary stabilization and fusion

    Article  PubMed  Google Scholar 

  28. • Jindal N, Sankhala SS, Bachhal V. The role of fusion in the management of burst fractures of the thoracolumbar spine treated by short segment pedicle screw fixation. J Bone Joint Surg Br. 2012;94-B:1101–6. Article questions the role of fusion in the treatment of spinal fractures

    Article  Google Scholar 

  29. Bresnahan L, Ogden AT, Natarajan RN, Fessler RG. A biomechanical evaluation of graded posterior element removal for treatment of lumbar stenosis: comparison of a minimally invasive approach with two standard laminectomy techniques. Spine (Phila Pa 1976). 2009;34:17–23.

    Article  Google Scholar 

  30. •• Wang ST, Ma H-L, Liu C-L, Yu WK, Chang MC, Chen TH. Is fusion necessary for surgically treated burst fractures of the thoracolumbar and lumbar spine?: a prospective randomized study. Spine. 2006;31(23):2646–52. First article to question the need to fusion for the treatment of burst fractures

    Article  PubMed  Google Scholar 

  31. •• Cui S, Busel GA, Puryear AS. Temporary pedicle screw stabilization without fusion of adolescent thoracolumbar spine fractures. J Pediatr Orthop. 2016;36(7):701–8. Recent article that use temporary stabilization without fusion in fractures with ligamentous disruption

    Article  PubMed  Google Scholar 

  32. Lindsey R, Dick W, Nunchuck S, Zach G. Residual intersegmental spinal mobility following limited fixation of thoracolumbar spine fractures with the fixateur interne. Spine. 1993;18(4):474–8.

    Article  CAS  PubMed  Google Scholar 

  33. Akbarnia BA, Crandall DG, Burkus K, Matthews T. Use of long rod and short arthrodesis for burst fractures of the thoracolumbar spine. A long-term follow up study. Journal of Bone and Joint Surgery-Series A. 1994;76(11):1629–35.

    Article  CAS  Google Scholar 

  34. Spiegl UJ, Jarvers JS, Glasmacher S, Heyde CE, Josten C. Release of moveable segments after dorsal stabilization: Imapct of affected disc. Unffallchirug. 2016;119(9):747–54.

    Article  CAS  Google Scholar 

  35. Gnanenthiran SR, Adie S, Harris IA. Non-operative versus operative treatment for thoracolumbar burst fractures without. Clinical Orthop Relate Re. 2012;470:567–77.

    Article  Google Scholar 

  36. Alpert HW, Farley FA, Caird MS, Hensinger RN, Li Y, Vanderhave KL. Outcomes following removal of instrumentation after posterior spine fusion. J Pediatr Orthop. 2014;34(6):613–7. doi:10.1097/BPO.0000000000000145.

    PubMed  Google Scholar 

  37. Ak H, Gulsen I, Atalay T, Gencer M. Does the removal of spinal implants reduce back pain? J Clin Med Res. 2015;7(6):460–3. doi:10.14740/jocmr2141w.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tian NF, Wu YS, Zhang XL, Wu XL, Chi YL, Moa FM. Fusion versus nonfusion for surgically treated thoracolumbar burst fractures: a meta-analysis. PLoS One. 2013;8(5):e63995. doi:10.1371/journal.pone.0063995.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Buser Z, Brodke DS, Youssef JA, Meisel HJ, Myhre SL, Hashimoto R, Park JB. Tim Yoon, Wang JC. Synthetic bone graft versus autograft or allograft for spinal fusion: a systemic review. J Neurosur Spine. 2016;25(4):509–16.

    Article  Google Scholar 

  40. Cimatti M, Forcato S, Polli F, Miscusi M, Frati A, Raco A. Pure percutaneous pedicle screw fixation without arthrodesis of 32 thoraco-lumbar fractures: clinical and radiological outcome with 36-month follow-up. Eur Spine J. 2013;22(Suppl 6):S925–32.

    Article  PubMed  Google Scholar 

  41. Tezeren G, Bulut O, Tukenmez M, Ozturk H, Oztemur Z, Ozturk A. Long segment instrumentation of thoracolumbar burst fracture: fusion versus nonfusion. J Back Musculoskelet Rehabil. 2009;22(2):107–12.

    Article  PubMed  Google Scholar 

  42. Kato S, Chikuda H, Ohya J, Oichi T, Matsu H, et al. Risk of infectious complications associated with blood transfusion in elective spine surgery—a propensity score matched analysis. Spine Journal. 2016;16(1):55–60.

    Article  PubMed  Google Scholar 

  43. Seicean A, Alan N, Seican S, Neuhauser D, Weil RJ. The effect of blood transfusion on short-term, perioperative outcomes in elective spine surgery. J Clin Neurosci. 2014;21(9):1579–85.

    Article  PubMed  Google Scholar 

  44. Chang HG, Kim YW, Jung JC, Kim HS, Lee KB. Preliminary report of temporary posterior instrumentation in stable thoracolumbar burst fractures. J Korean Soc Spine Surg. 2002;9(4):364–73.

    Article  Google Scholar 

  45. Cox JB, Yang M, Jacob RP, et al. Temporary percutaneous pedicle screw fixation for treatment of thoracolumbar injuries in young adults. J Neurol Surg A Cent Eur Neurosurg. 2013;74:7–11.

    Article  PubMed  Google Scholar 

  46. Gardner VO, Armstrong GW. Long-term lumbar facet joint changes in spinal fracture patients treated with Harrington rods. Spine. 1990;15:479–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ripul R. Panchal.

Ethics declarations

Conflict of interest

Aaron P Dansion and Darrin Lee declare that they have no conflict of interest. Ripul Panchal reports personal fees from Baxter, grants and personal fees from Globus, personal fees from GS Medical, personal fees from Medtronic, personal fees from MizuhoOSI, personal fees from Precision Spine, grants from SpineGuard, and personal fees from ZimmerBiomet, outside the submitted work.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008. All institutional and national guidelines for the care and use of laboratory animals were followed.

Additional information

This article is part of the Topical Collection on Motion Preserving Spine Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danison, A.P., Lee, D.J. & Panchal, R.R. Temporary stabilization of unstable spine fractures. Curr Rev Musculoskelet Med 10, 199–206 (2017). https://doi.org/10.1007/s12178-017-9402-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-017-9402-y

Keywords

Navigation