Skip to main content
Log in

Assessment of the pivot shift using inertial sensors

  • ACL Update: Objective Measures on Knee Instability (V Musahl, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

The pivot shift test is an important clinical tool used to assess the stability of the knee following an injury to the anterior cruciate ligament (ACL). Previous studies have shown that significant variability exists in the performance and interpretation of this manoeuvre. Accordingly, a variety of techniques aimed at standardizing and quantifying the pivot shift test have been developed. In recent years, inertial sensors have been used to measure the kinematics of the pivot shift. The goal of this study is to present a review of the literature and discuss the principles of inertial sensors and their use in quantifying the pivot shift test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Galway HR, MacIntosh DL. The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop. 1980;147:45–50.

    PubMed  Google Scholar 

  2. Jakob RP, Stäubli HU, Deland JT. Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg (Br). 1987;69(2):294–9.

    CAS  Google Scholar 

  3. Prins M. The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. Aust J Physiother. 2006;52(1):66.

    Article  PubMed  Google Scholar 

  4. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ. Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32(3):629–34.

    Article  PubMed  Google Scholar 

  5. Snyder-Mackler L, Fitzgerald GK, Bartolozzi AR, Ciccotti MG. The relationship between passive joint laxity and functional outcome after anterior cruciate ligament injury. Am J Sports Med. 1997;25(2):191–5.

    Article  CAS  PubMed  Google Scholar 

  6. Kujala UM, Nelimarkka O, Koskinen SK. Relationship between the pivot shift and the configuration of the lateral tibial plateau. Arch Orthop Trauma Surg. 1992;111(4):228–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kaplan N, Wickiewicz TL, Warren RF. Primary surgical treatment of anterior cruciate ligament ruptures. A long-term follow-up study. Am J Sports Med. 1990;18(4):354–8.

    Article  CAS  PubMed  Google Scholar 

  8. Noyes FR, Bassett RW, Grood ES, Butler DL. Arthroscopy in acute traumatic hemarthrosis of the knee. Incidence of anterior cruciate tears and other injuries. J Bone Joint Surg Am. 1980;62(5):687–95. 757.

    CAS  PubMed  Google Scholar 

  9. Lopomo N, Zaffagnini S, Amis AA. Quantifying the pivot shift test: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):767–83. Relevant to analyze all the methods and parameters currently used with the aim to quantify the pivot shift test. No other specific review article is available.

    Article  PubMed  Google Scholar 

  10. Tashiro Y, Okazaki K, Miura H, Matsuda S, Yasunaga T, Hashizume M, et al. Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med. 2009;37(5):909–16.

    Article  PubMed  Google Scholar 

  11. Csintalan RP, Ehsan A, McGarry MH, Fithian DF, Lee TQ. Biomechanical and anatomical effects of an external rotational torque applied to the knee: a cadaveric study. Am J Sports Med. 2006;34(10):1623–9.

    Article  PubMed  Google Scholar 

  12. Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T. Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg. 2009;129(3):353–8.

    Article  PubMed  Google Scholar 

  13. Muller B, Hofbauer M, Rahnemai-Azar AA, Wolf M, Araki D, Hoshino Y, et al. Development of computer tablet software for clinical quantification of lateral knee compartment translation during the pivot shift test. Comput Methods Biomech Biomed Engin. 2016;19(2):217–28. Describes a newly developed system to quantify pivot shift in a non-invasive way.

    Article  PubMed  Google Scholar 

  14. Amis AA, Cuomo P, Rama RBS, Giron F, Bull AMJ, Thomas R, et al. Measurement of knee laxity and pivot-shift kinematics with magnetic sensors. Oper Tech Orthop. 2008;18(3):196–203.

    Article  Google Scholar 

  15. Kuroda R, Hoshino Y, Nagamune K, Kubo S, Nishimoto K, Araki D, et al. Intraoperative measurement of pivot shift by electromagnetic sensors. Oper Tech Orthop. 2008;18(3):190–5.

    Article  Google Scholar 

  16. Labbe DR, de Guise JA, Godbout V, Grimard G, Baillargeon D, Lavigne P, et al. Accounting for velocity of the pivot shift test manoeuvre decreases kinematic variability. Knee. 2011;18(2):88–93.

    Article  PubMed  Google Scholar 

  17. Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, et al. Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech. 2010;43(16):3080–4.

    Article  PubMed  Google Scholar 

  18. Lopomo N, Zaffagnini S, Signorelli C, Bignozzi S, Giordano G, Marcheggiani Muccioli GM, et al. An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Engin. 2012;15(12):1323–8.

    Article  PubMed  Google Scholar 

  19. Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani Muccioli GM, Visani A, Zaffagnini S. Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):713–7. Describes an innovative method for pivot shift analysis based on inertial sensor. It also compares the innovative device with a navigation system.

    Article  PubMed  Google Scholar 

  20. Zaffagnini S, Lopomo N, Signorelli C, Marcheggiani Muccioli GM, Bonanzinga T, Grassi A, et al. Innovative technology for knee laxity evaluation: clinical applicability and reliability of inertial sensors for quantitative analysis of the pivot-shift test. Clin Sports Med. 2013;32(1):61–70.

    Article  PubMed  Google Scholar 

  21. Berruto M, Uboldi F, Gala L, Marelli B, Albisetti W. Is triaxial accelerometer reliable in the evaluation and grading of knee pivot-shift phenomenon? Knee Surg Sports Traumatol Arthrosc. 2013;21(4):981–5.

    Article  CAS  PubMed  Google Scholar 

  22. Nakamura K, Koga H, Sekiya I, Watanabe T, Mochizuki T, Horie M, et al. Evaluation of pivot shift phenomenon while awake and under anaesthesia by different manoeuvres using triaxial accelerometer. Knee Surg Sports Traumatol Arthrosc. 2015.

  23. Labbé DR, Li D, Grimard G, de Guise JA, Hagemeister N. Quantitative pivot shift assessment using combined inertial and magnetic sensing. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2330–8.

    Article  PubMed  Google Scholar 

  24. Petrigliano FA, Borgstrom PH, Kaiser WJ, McAllister DR, Markolf KL. Measurements of tibial rotation during a simulated pivot shift manoeuvre using a gyroscopic sensor. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2237–43.

    Article  PubMed  Google Scholar 

  25. Borgstrom PH, Markolf KL, Foster B, Petrigliano FA, McAllister DR. Use of a gyroscope sensor to quantify tibial motions during a pivot shift test. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):2064–9.

    Article  PubMed  Google Scholar 

  26. Ishibashi Y, Tsuda E, Yamamoto Y, Tsukada H, Toh S. Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: is the posterolateral bundle more important? Arthroscopy 2009;25(5):488–95.

    Article  PubMed  Google Scholar 

  27. Lopomo N, Bignozzi S, Zaffagnini S, Giordano G, Irrgang JJ, Fu FH, et al. Quantitative correlation between IKDC score, static laxity, and pivot-shift test: a kinematic analysis of knee stability in anatomic double-bundle anterior cruciate ligament reconstruction. Oper Tech Orthop. 2008;18(3):185–9.

    Article  Google Scholar 

  28. Robinson J, Carrat L, Granchi C, Colombet P. Influence of anterior cruciate ligament bundles on knee kinematics: clinical assessment using computer-assisted navigation. Am J Sports Med. 2007;35(12):2006–13.

    Article  PubMed  Google Scholar 

  29. Zaffagnini S, Bignozzi S, Martelli S, Imakiire N, Lopomo N, Marcacci M. New intraoperative protocol for kinematic evaluation of ACL reconstruction: preliminary results. Knee Surg Sports Traumatol Arthrosc. 2006;14(9):811–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Zaffagnini.

Ethics declarations

Conflict of interest

Stefano Zaffagnini, Cecilia Signorelli, Alberto Grassi, Han Yue, Federico Raggi, Francisco Urrizola, Tommaso Bonanzinga, and Maurilio Marcacci declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on ACL Update: Objective Measures on Knee Instability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaffagnini, S., Signorelli, C., Grassi, A. et al. Assessment of the pivot shift using inertial sensors. Curr Rev Musculoskelet Med 9, 160–163 (2016). https://doi.org/10.1007/s12178-016-9333-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-016-9333-z

Keywords

Navigation