Skip to main content
Log in

Quantitative pivot shift assessment using combined inertial and magnetic sensing

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of the study was to demonstrate the feasibility of a new measurement system using micro-electromechanical systems (MEMS)-based sensors for quantifying the pivot shift phenomenon.

Methods

The pivot shift test was performed on 13 consecutive anterior cruciate ligament-deficient subjects by an experienced examiner while femur and tibia kinematics were recorded using two inertial sensors each composed of an accelerometer, gyroscope and magnetometer. The gravitational component of the acquired data was removed using a novel method for estimating sensor orientations. Correlation between the clinical pivot shift grade and acceleration and velocity parameters was measured using Spearman’s rank correlation coefficients.

Results

The pivot shift phenomenon was best characterized as a drop in femoral acceleration observed at the time of reduction. The correlation between the femoral acceleration drop and the clinical grade was shown to be very strong (r = 0.84, p < 0.0001).

Conclusions

The present study demonstrates the feasibility of quantifying the pivot shift using MEMS-based sensors and removing the gravitational component of acceleration using an estimation of sensor orientation for improved correlation to the clinical grade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahlden M, Araujo P, Hoshino Y, Samuelsson K, Middleton KK, Nagamune K, Karlsson J, Musahl V (2012) Clinical grading of the pivot shift test correlates best with tibial acceleration. Knee Surg Sports Traumatol Arthrosc 20(4):708–712

    Article  PubMed  Google Scholar 

  2. Amis A, Cuomo P, Rama R, Giron F, Bull A, Thomas R, Aglietti P (2008) Measurement of knee laxity and pivot-shift kinematics with magnetic sensors. Oper Tech Orthop 18(3):196–203

    Article  Google Scholar 

  3. Araujo PH, Ahlden M, Hoshino Y, Muller B, Moloney G, Fu FH, Musahl V (2012) Comparison of three non-invasive quantitative measurement systems for the pivot shift test. Knee Surg Sports Traumatol Arthrosc 20(4):692–697

    Article  PubMed  Google Scholar 

  4. Bach BR Jr, Warren RF, Wickiewicz TL (1988) The pivot shift phenomenon: results and description of a modified clinical test for anterior cruciate ligament insufficiency. Am J Sports Med 16(6):571–576

    Article  PubMed  Google Scholar 

  5. Bull AMJ, Amis AA (1998) The pivot-ship phenomenon: a clinical and biomechanical perspective. Knee 5:141–158

    Article  Google Scholar 

  6. Bull AMJ, Earnshaw PH, Smith A, Katchburian MV, Hassan ANA, Amis AA (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 84(7):1075–1081

    Article  CAS  PubMed  Google Scholar 

  7. Creamer G (1996) Spacecraft attitude determination using gyros and quaternion measurements. J Astronaut Sci 44(3):357–371

    Google Scholar 

  8. Debandi A, Maeyama A, Hoshino Y, Asai S, Goto B, Smolinski P, Fu FH (2013) The effect of tunnel placement on rotational stability after ACL reconstruction: evaluation with use of triaxial accelerometry in a porcine model. Knee Surg Sports Traumatol Arthrosc 21(3):589–595

    Article  PubMed  Google Scholar 

  9. Farrell JA (2008) Aided Navigation GPS with High Rate Sensors. McGraw-Hill

  10. Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45–50

    PubMed  Google Scholar 

  11. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144

    Article  CAS  PubMed  Google Scholar 

  12. Hagemeister N, Parent G, Van de Putte M, St-Onge N, Duval N, de Guise J (2005) A reproducible method for studying three-dimensional knee kinematics. J Biomech 38(9):1926–1931

    Article  PubMed  Google Scholar 

  13. Hoshino Y, Araujo P, Irrgang JJ, Fu FH, Musahl V (2012) An image analysis method to quantify the lateral pivot shift test. Knee Surg Sports Traumatol Arthrosc 20(4):703–707

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35(7):1098–1104

    Article  PubMed  Google Scholar 

  15. Ishibashi Y, Tsuda E, Yamamoto Y, Tsukada H, Toh S (2009) Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: is the posterolateral bundle more important? Arthroscopy 25(5):488–495

    Article  PubMed  Google Scholar 

  16. Jakob RP, Stäubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br 69(2):294–299

    CAS  PubMed  Google Scholar 

  17. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32(3):629–634

    Article  PubMed  Google Scholar 

  18. Kopf S, Kauert R, Halfpaap J, Jung T, Becker R (2012) A new quantitative method for pivot shift grading. Knee Surg Sports Traumatol Arthrosc 20(4):718–723

    Article  CAS  PubMed  Google Scholar 

  19. Kubo S, Muratsu H, Yoshiya S, Mizuno K, Kurosaka M (2007) Reliability and usefulness of a new in vivo measurement system of the pivot shift. Clin Orthop Relat Res 454:54–58

    Article  PubMed  Google Scholar 

  20. Labbe DR, de Guise JA, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Masse V, Ranger P, Hagemeister N (2011) Accounting for velocity of the pivot shift test manoeuvre decreases kinematic variability. Knee 18(2):88–93

    Article  PubMed  Google Scholar 

  21. Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2010) Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech 43(16):3080–3084

    Article  PubMed  Google Scholar 

  22. Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2011) Objective grading of the pivot shift phenomenon using a support vector machine approach. J Biomech 44(1):1–5

    Article  PubMed  Google Scholar 

  23. Lane C, Warren R, Stanford F, Kendoff D, Pearle A (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16(5):487–492

    Article  PubMed  Google Scholar 

  24. Leitze Z, Losee R, Jokl P, Johnson T, Feagin J (2005) Implications of the pivot shift in the ACL-deficient knee. Clin Orthop Relat Res 436:229

    Article  PubMed  Google Scholar 

  25. Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani Muccioli GM, Visani A, Zaffagnini S (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc 20(4):713–717

    Article  PubMed  Google Scholar 

  26. Maeyama A, Hoshino Y, Debandi A, Kato Y, Saeki K, Asai S, Goto B, Smolinski P, Fu FH (2011) Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sports Traumatol Arthrosc 19(8):1233–1238

    Article  PubMed  Google Scholar 

  27. Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19(2):148–155

    Article  CAS  PubMed  Google Scholar 

  28. Okazaki K, Tashiro Y, Izawa T, Matsuda S, Iwamoto Y (2012) Rotatory laxity evaluation of the knee using modified Slocum’s test in open magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20(4):679–685

    Article  PubMed  Google Scholar 

  29. Petermann J, Trus P, Niess C, Gotzen L (1999) A modified pivot-shift test for diagnosis confirmation in anterior cruciate ligament rupture. Knee 6(2):131–136

    Article  Google Scholar 

  30. Petrie A (2006) Statistics in orthopaedic papers. J Bone Joint Surg Br 88(9):1121–1136

    Article  CAS  PubMed  Google Scholar 

  31. Roetenberg D, Luinge HJ, Baten CT, Veltink PH (2005) Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Trans Neural Syst Rehabil Eng 13(3):395–405

    Article  PubMed  Google Scholar 

  32. Windolf M, Gotzen N, Morlock M (2008) Systematic accuracy and precision analysis of video motion capturing systems–exemplified on the Vicon-460 system. J Biomech 41(12):2776–2780

    Article  PubMed  Google Scholar 

  33. Zaffagnini S, Lopomo N, Signorelli C, Marcheggiani Muccioli GM, Bonanzinga T, Grassi A, Visani A, Marcacci M (2013) Innovative technology for knee laxity evaluation: clinical applicability and reliability of inertial sensors for quantitative analysis of the pivot-shift test. Clin Sports Med 32(1):61–70

    Article  PubMed  Google Scholar 

  34. Zaffagnini S, Signorelli C, Lopomo N, Bonanzinga T, Marcheggiani Muccioli GM, Bignozzi S, Visani A, Marcacci M (2012) Anatomic double-bundle and over-the-top single-bundle with additional extra-articular tenodesis: an in vivo quantitative assessment of knee laxity in two different ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 20(1):153–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Canada Research Chair in 3D Imaging and Biomedical Engineering, Prompt Inc., and Emovi Inc. for funding. We would also like to thank Gerard Parent for his invaluable help in operating the Vicon optical reference system during the validation process.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Labbé.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labbé, D.R., Li, D., Grimard, G. et al. Quantitative pivot shift assessment using combined inertial and magnetic sensing. Knee Surg Sports Traumatol Arthrosc 23, 2330–2338 (2015). https://doi.org/10.1007/s00167-014-3056-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3056-8

Keywords

Navigation