Skip to main content
Log in

Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Recently, several publications investigated the rotational instability of the human knee joint under pivot shift examinations and reported the internal tibial rotation as measurement for instrumented knee laxity measurements. We hypothesize that ACL deficiency leads to increased internal tibial rotation under a simulated pivot shift test. Furthermore, it was hypothesized that anatomic single bundle ACL reconstruction significantly reduces the internal tibial rotation under a simulated pivot shift test when compared to the ACL-deficient knee.

Methods

In seven human cadaveric knees, the kinematics of the intact knee, ACL-deficient knee, and anatomic single bundle ACL reconstructed knee were determined in response to a 134 N anterior tibial load and a combined rotatory load of 10 N m valgus and 4 N m internal tibial rotation using a robotic/UFS testing system. Statistical analyses were performed using a two-way ANOVA test.

Results

Single bundle ACL reconstruction reduced the anterior tibial translation under a simulated KT-1000 test significantly compared to the ACL-deficient knee (P < 0.05). After reconstruction, there was a statistical significant difference to the intact knee at 30° of knee flexion. Under a simulated pivot shift test, anatomic single bundle ACL reconstruction could restore the intact knee kinematics. Internal tibial rotation under a simulated pivot shift showed no significant difference in the ACL-intact, ACL-deficient and ACL-reconstructed knee.

Conclusion

In conclusion, ACL deficiency does not increase the internal tibial rotation under a simulated pivot shift test. For objective measurements of the rotational instability of the knee using instrumented knee laxity devices under pivot shift mechanisms, the anterior tibial translation should be rather evaluated than the internal tibial rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amis A, Bull AMJ, Lie DT (2005) Biomechanics of rotational instability and anatomic anterior cruciate ligament reconstruction. Oper Tech Orthop 15:29–35

    Article  Google Scholar 

  2. Amis AA, Jakob RP (1998) Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S2–S12

    Article  PubMed  Google Scholar 

  3. Bull AMJ, Amis AA (1998) The pivot shift phenomenon: a clinical and biomechanical perspective. Knee 5:141–158

    Article  Google Scholar 

  4. Buoncristiani AM, Tjoumakaris FP, Starman JS, Ferretti M, Fu FH (2006) Anatomic double-bundle anterior cruciate ligament reconstruction. Arthroscopy 22(9):1000–1006

    PubMed  Google Scholar 

  5. Christel M, Witvoet J, Pelisse F, Meunier A, Girard F (1986) Instrumental measurement of the anteroposterior laxity of the normal and lax knee. Rev Chir Orthop Reparatrice Appar Mot 2:115–118

    Google Scholar 

  6. Daniel DM, Stone ML, Sachs R, Macolm L (1985) Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med 13:401–407

    Article  PubMed  CAS  Google Scholar 

  7. Gabriel MT, Wong EK, Woo SL, Yagi M, Debski RE (2004) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res 22:85–89

    Article  PubMed  Google Scholar 

  8. Girgis FG, Marshall JL, Monajem A (1975) The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res 106:216–231

    Article  PubMed  Google Scholar 

  9. Jonsson H, Riklund-Ahlstrom K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75(5):594–599

    Article  PubMed  Google Scholar 

  10. Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, Woo SL (2002) The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy 18:394–398

    PubMed  Google Scholar 

  11. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32:629–634

    Article  PubMed  Google Scholar 

  12. Kubo S, Muratsu H, Yoshiya S, Mizuno K, Kurosaka M (2007) Reliability and usefulness of a new in vivo measurement system of the pivot shift. Clin Orthop Relat Res 454:54–58

    Article  PubMed  Google Scholar 

  13. Lenschow S, Zantop T, Weimann A, Lemburg T, Raschke M, Strobel M, Petersen W (2006) Joint kinematics and in situ forces after single-bundle PCL reconstruction: a graft placed at the center of the femoral attachment does not restore normal posterior laxity. Arch Orthop Trauma Surg 126:253–259

    Article  PubMed  Google Scholar 

  14. Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy 19:297–304

    Article  PubMed  Google Scholar 

  15. Miura K, Woo SL, Brinkley R, Fu YC, Noorani S (2006) Effects of knee flexion angles for graft fixation on force distribution in double-bundle anterior cruciate ligament grafts. Am J Sports Med 34(4):577–585

    Article  PubMed  Google Scholar 

  16. Musahl V, Bell KM, Tsai AG, Costic RS, Allaire R, Zantop T, Irrgang JJ, Fu FH (2007) Development of a simple device for measurement of rotational knee laxity. Knee Surg Sports Traumatol Arthrosc 15(8):1009–1012

    Article  PubMed  Google Scholar 

  17. Petersen W, Tretow H, Weimann A, Herbort M, Fu FH, Raschke MJ, Zantop T (2007) Biomechanical evaluation of two techniques for double-bundle ACL reconstruction using a robotic/UFS testing system. Am J Sports Med 35(2):228–234

    Google Scholar 

  18. Petersen W, Zantop T (2007) Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin Orthop Relat Res 454:35–47

    Article  PubMed  Google Scholar 

  19. Weber W (1836) Mechanik der menschlichen Gehwerkzeuge. Dieterichsche Buchhandlung, Göttingen

    Google Scholar 

  20. Woo SL, Kanamori A, Zeminski J, Yagi M, Papageorgiou C, Fu FH (2002) The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am 84:907–914

    PubMed  Google Scholar 

  21. Woo SL-Y, Orlando CA, Camp JF, Akeson WH (1986) Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech 19:399–404

    Article  PubMed  CAS  Google Scholar 

  22. Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka M (2007) Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 454:100–107

    Article  PubMed  Google Scholar 

  23. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666

    PubMed  Google Scholar 

  24. Zantop T, Herbort M, Raschke MJ, Fu FH, Petersen W (2007) The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med 35:223–227

    Article  PubMed  Google Scholar 

  25. Zantop T, Petersen W, Sekiya JK, Musahl V, Fu FH (2006) Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc 14:982–992

    Article  PubMed  Google Scholar 

  26. Zantop T, Schumacher T, Diermann N, Schanz S, Raschke MJ, Petersen W (2007) Anterolateral rotational knee instability: role of posterolateral structures. Arch Orthop Trauma Surg 127:743–752

    Article  PubMed  Google Scholar 

  27. Zantop T, Wellmann M, Fu FH, Petersen W (2008) Tunnel positioning of AM and PL bundle in anatomical ACL reconstructions: anatomic and radiographic findings. Am J Sports Med 36:65–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thore Zantop.

Additional information

This study was supported in part by a grant of the German Speaking Association of Arthroscopy (AGA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diermann, N., Schumacher, T., Schanz, S. et al. Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg 129, 353–358 (2009). https://doi.org/10.1007/s00402-008-0681-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-008-0681-z

Keywords

Navigation