Skip to main content

Advertisement

Log in

Cognition and Hemodynamics

  • Elderly and Cardiovascular Disease (DE Forman and JM Gaziano, Section Editors)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

The relationship between cerebral hemodynamics and cognitive performance has increasingly become recognized as a major challenge in clinical practice for older adults. Both diabetes and hypertension worsen brain perfusion and are major risk factors for cerebrovascular disease, stroke, and dementia. Cerebrovascular reserve has emerged as a potential biomarker for monitoring pressure–perfusion–cognition relationships. Endothelial dysfunction and inflammation, microvascular disease, and mascrovascular disease affect cerebral hemodynamics and play an important role in pathohysiology and severity of multiple medical conditions, presenting as cognitive decline in the old age. Therefore, the identification of cerebrovascular vascular reactivity as a new therapeutic target is needed for prevention of cognitive decline late in life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Pereira M, Lunet N, Azevedo A, Barros H. Differences in prevalence, awareness, treatment and control of hypertension between developing and developed countries. J Hypertens. 2009;27:963–75. Distribution and impact of hypertension worldwide.

    Article  PubMed  CAS  Google Scholar 

  2. Rutan GH, Hermanson B, Bild DE, Kittner SJ, LaBaw F, Tell GS. Orthostatic hypotension in older adults. The cardiovascular health study. CHS collaborative research group. Hypertension. 1992;19:508–19.

    Article  PubMed  CAS  Google Scholar 

  3. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.

    Article  PubMed  Google Scholar 

  4. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94:311–21.

    Article  PubMed  Google Scholar 

  5. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.

    PubMed  Google Scholar 

  6. Novak V, Hajjar I. The relationship between blood pressure and cognitive function. Nat Rev Cardiol. 2010;7:686–98.

    PubMed  Google Scholar 

  7. Qiu C, Winblad B, Fratiglioni L. Low diastolic pressure and risk of dementia in very old people: a longitudinal study. Dement Geriatr Cogn Disord. 2009;28:213–9.

    Article  PubMed  Google Scholar 

  8. Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005;4:487–99.

    Article  PubMed  Google Scholar 

  9. Moretti R, Torre P, Antonello RM, Manganaro D, Vilotti C, Pizzolato G. Risk factors for vascular dementia: hypotension as a key point. Vasc Health Risk Manag. 2008;4:395–402.

    PubMed  Google Scholar 

  10. Rose KM, Couper D, Eigenbrodt ML, Mosley TH, Sharrett AR, Gottesman RF. Orthostatic hypotension and cognitive function: the atherosclerosis risk in communities study. Neuroepidemiology. 2010;34:1–7.

    Article  PubMed  Google Scholar 

  11. Lavi S, Gaitini D, Milloul V, Jacob G. Impaired cerebral CO2 vasoreactivity: association with endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2006;291:H1856–61.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang P, Huang G, Shi X. Cerebral vasoreactivity during hypercapnia is reset by augmented sympathetic influence. J Appl Physiol. 2011;110:352–8.

    Article  PubMed  Google Scholar 

  13. Pineiro R, Matthews PM. Cerebral vasoreactivity and functional response in stroke: a study with functional MR. Rev Neurol. 2001;33:701–8.

    PubMed  CAS  Google Scholar 

  14. Ito H, Kanno I, Takahashi K, Ibaraki M, Miura S. Regional distribution of human cerebral vascular mean transit time measured by positron emission tomography. NeuroImage. 2003;19:1163–9.

    Article  PubMed  Google Scholar 

  15. Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100:328–35.

    Article  PubMed  CAS  Google Scholar 

  16. Aaslid R, Newell DW, Stooss R, Sorteberg W, Lindegaard K. Assessment of cerebral autoregulation dynamics from simultaneous arterial and venous transcranial Doppler recordings in humans. Stroke. 1991;22:1148–54.

    Article  PubMed  CAS  Google Scholar 

  17. Aaslid R. Cerebral hemodynamics. In: Newell DW, Aaslid R, editors. Transcranial Doppler. New York: Raven; 1992. p. 49–55.

    Google Scholar 

  18. Cigada M, Marzorati S, Tredici S, Lapichino G. Cerebral CO2 vasoreactivity by transcranial Doppler ultrasound technique a standardized methodlogy. Intensiv Care Med. 2000;26:729–32.

    Article  CAS  Google Scholar 

  19. Panerai RB. Assessment of cerebral pressure autoregulation in humans–a review of measurement methods. Physiol Meas. 1998;19:305–3008.

    Article  PubMed  CAS  Google Scholar 

  20. Tiecks FP, Douville C, Byrd S, Lam AM, Newell DW. Evaluation of impaired cerebral autoregulation by the Valsalva maneuver. Stroke. 1996;27:1177–82.

    Article  PubMed  CAS  Google Scholar 

  21. Panerai RB, Dawson SL, Potter JF. Linear and nonlinear analysis of human dynamic autoregulation. Am J Physiol Heart Circ Physiol. 1999;277:H1089–99.

    CAS  Google Scholar 

  22. Panerai RB, Eames PJ, Potter JF. Multiple coherence of cerebral blood flow velocity in humans. Am J Physiol Heart Circ Physiol. 2006;291:H251–9.

    Article  PubMed  CAS  Google Scholar 

  23. Panerai RB, Rennie JM, Kelsall AW, Evans DH. Frequency-domain analysis of cerebral autoregulation from spontaneous fluctuations in arterial blood pressure. Med Biol Eng Comput. 1998;36:315–22.

    Article  PubMed  CAS  Google Scholar 

  24. Low PA, Novak V, Spies JM, Novak P, Petty G. Cerebrovascular regulation in the postural tachycardia syndrome (POTS). Am J Med Sci. 1999;317:124–33.

    Article  PubMed  CAS  Google Scholar 

  25. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20:45–52.

    Article  PubMed  CAS  Google Scholar 

  26. Novak V, Novak P, Spies JM, Low PA. Autoregulation of cerebral blood flow in orthostatic hypotension. Stroke. 1998;29:104–11.

    Article  PubMed  CAS  Google Scholar 

  27. Hu K, Peng CK, Huang NE, Wu Z, Lipsitz LA, Cavallerano JD. Altered phase interactions between spontaneous blood pressure and flow fluctuations in type 2 diabetes mellitus:nonlinear assessment of autoregulation. Physica A. 2008;387:2279–92.

    Article  PubMed  Google Scholar 

  28. Eames PJ, Blake MJ, Dawson SL, Panerai RB, Potter J. Dynamic cerebral autoregulation and beat-to-beat blood pressure control are impaired in acute ischaemic stroke. J Neurol Neurosurg Psychiatry. 2002;72:467–73.

    PubMed  CAS  Google Scholar 

  29. Novak V, Chowdhary A, Farrar B, Nagaraja H, Braun J, Kanard R, et al. Altered cerebral vasoregulation in hypertension and stroke. Neurology. 2003;60:1657–63.

    Article  PubMed  CAS  Google Scholar 

  30. Anonymous: Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy.; 1997, p 1470.

  31. Zhang R, Zuckerman JH, Giller CA, Levine BD. Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol. 1998;274:H233–41.

    PubMed  CAS  Google Scholar 

  32. Tiecks FP, Lam AM, Matta BF, Strebel S, Douville C, Newell DW. Effects of the Valsalva maneuver on cerebral circulation in healthy adults. A transcranial Doppler study. Stroke. 1995;26:1386–92.

    Article  PubMed  CAS  Google Scholar 

  33. Novak V, Hu K, Desrochers L, Novak P, Caplan L, Lipsitz LA, et al. Cerebral flow velocities during daily activities depend on blood pressure in patients with chronic ischemic infarctions. Stroke. 2010;41:61–6.

    Article  PubMed  Google Scholar 

  34. van Lieshout JJ, Wieling W. Perfusion of the human brain: a matter of interactions. J Physiol. 2003;551:402.

    Article  PubMed  CAS  Google Scholar 

  35. Davidson E, Rotenbeg Z, Fuchs J, Weinberger I, Agmon J. Transient ischemic attack-related syncope. Clin Cardiol. 1991;14:141–4.

    Article  PubMed  CAS  Google Scholar 

  36. Lundberg N. Continuous recording and control of verntricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand. 1960;36:1–193.

    CAS  Google Scholar 

  37. Maeda M, Takahashi K, Miyazaki M, Ishii S. The role of the central monoamine system and the cholinoceptive pontine area on the oscillation of ICP “ pressure waves”, vol VI. In: Miller JD, Teasdale GM, Rowan JO, Galbraith SL, Mendelow AD, editors. Intracranial Pressure VI.Proceedings of the Sixth International Symposium on Intracranial Pressure, glasgow, Scotland June 9–13, 1985. Berlin: Springer-Verlag; 1986. p. 151–5.

    Google Scholar 

  38. Steinmeier R, Bauhuf C, Hubner U, Dietrich Bauer R, Fahlbusch R, Laumer R, et al. Slow rhythmic oscillations in blood pressure, intracranial pressure, microcirculation, and cerebral oxygenation. Stroke. 1996;27:2236–43.

    Article  PubMed  CAS  Google Scholar 

  39. Latka M, Turalska M, Glaubic-Latka M, Kolodziej W, Latka D, West BJ. Phase dynamics in cerebral autoregulation. Am J Physiol Heart Circ Physiol. 2005;289:H2272–9.

    Article  PubMed  CAS  Google Scholar 

  40. Hu K, Peng CK, Czosnyka M, Zhao P, Novak V. Nonlinear assessment of cerebral autoregulation from spontaneous blood pressure and cerebral blood flow fluctuations. Cardiovasc Eng. 2008;8:60–71.

    Article  PubMed  Google Scholar 

  41. Blaber AP, Bondar RL, Stein F, Dunphy PT, Moradshahi P, Kassam MS, et al. Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients. Stroke. 1997;28:1686–92.

    Article  PubMed  CAS  Google Scholar 

  42. Schondorf R, Stein R, Roberts R, Benoit J, Cupples WA. Dynamic cerebral autoregulation is preserved in neurally mediated syncope. J Appl Physiol. 2001;91:2493–502.

    PubMed  CAS  Google Scholar 

  43. Czosnyka M, Piechnik S, Richards HK, Kirkpatrick P, Smielewski P, Pickard JD. Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation. [Review] [47 refs]. J Neurol Neurosurg Psychiatry. 1997;63:721–31.

    Article  PubMed  CAS  Google Scholar 

  44. Bullock R, Mendelow AD, Bone I, Patterson J, Macleod WN, Allardice G. Cerebral blood flow and CO2 responsiveness as an indicator of collateral reserve capacity in patients with carotid artery disease. Br J Surg. 1985;72:348–51.

    Article  PubMed  CAS  Google Scholar 

  45. Last D, Alsop DC, Abduljalil AM, Marquis RP, de Bazelaire C, Hu K, et al. Global and regional effects of type 2 diabetes mellitus on brain tissue volumes and cerebral vasoreactivity. Diabetes Care. 2007;30:1193–9.

    Article  PubMed  Google Scholar 

  46. Zhao P, Alsop D, Abduljail A, Selim M, Lipsitz L, Novak P, et al. Altered vasoreactivity and peri-infarct hyperintensities affect multiple terriories in stroke. Neurology. 2009;72:643–9.

    Article  PubMed  CAS  Google Scholar 

  47. Brown GG, Clark C, Liu TT. Measurement of cerebral perfusion with arterial spin labeling: part 2. Applications. J Int Neuropsychol Soc. 2007;13:526–38.

    Article  PubMed  Google Scholar 

  48. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med. 2008;60:1488–97.

    Article  PubMed  Google Scholar 

  49. Dai W, Robson PM, Shankaranarayanan A, Alsop DC. Modified pulsed continuous arterial spin labeling for labeling of a single artery. Magn Reson Med. 2010;64:975–82.

    Article  PubMed  Google Scholar 

  50. Novak V, Zhao P, Manor B, Sejdic E, Alsop D, Abduljalil A, et al. Adhesion molecules, altered vasoreactivity, and brain atrophy in type 2 diabetes. Diabetes Care. 2011;34:2438–41.

    Article  PubMed  Google Scholar 

  51. Melzer TR, Watts R, Macaskill MR, Pearson JF, Rueger S, Pitcher TL, et al. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson’s disease. Brain 2011.

  52. Williams K, MacLean C. Transcranial assessment of maternal cerebral blood flow velocity in normal vs. hypertensive states. Variations with maternal posture. J Reprod Med. 1994;39:685–8.

    PubMed  CAS  Google Scholar 

  53. Alsop DC, Detre JA. Reduced transit-time sensitivity in non-invasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab. 1996;16:1236–49.

    Article  PubMed  CAS  Google Scholar 

  54. Ye FQ, Berman KF, Ellmore T, Esposito G, van Horn JD, Yang Y, et al. H2150 PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med. 2000;44:450–6.

    Article  PubMed  CAS  Google Scholar 

  55. Hajjar I, Zhao P, Alsop D, Novak V. Hypertension and cerebral vasoreactivity: a continuous arterial spin labeling magnetic resonance imaging study. Hypertension. 2010;56:859–64.

    Article  PubMed  CAS  Google Scholar 

  56. Waldstein SR, Giggey PP, Thayer JF, Zonderman AB. Nonlinear relations of blood pressure to cognitive function: the Baltimore longitudinal study of aging. Hypertension. 2005;45:374–9.

    Article  PubMed  CAS  Google Scholar 

  57. Waldstein SR, Rice SC, Thayer JF, Najjar SS, Scuteri A, Zonderman AB. Pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore longitudinal study of aging. Hypertension. 2008;51:99–104.

    Article  PubMed  CAS  Google Scholar 

  58. Ikram MK, De Jong FJ, Van Dijk EJ, Prins ND, Hofman A, Breteler MN, et al. Retinal vessel diameters and cerebral small vessel disease: the Rotterdam Scan Study. Brain 2006;182–188.

  59. Vermeer SE, Prins ND, den Heijer T, Koudstaal PJ, Breteler MM. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med. 2003;27:1215–22.

    Article  Google Scholar 

  60. de Groot JC, de Leeuw FE, Ouderk M, Hofman A, Jolles J, Breteler MM. Cerebral white matter lesions and subjective cognitive dysfunction: the Rotterdam Scan Study. Neurology. 2001;56:1539–41.

    Article  PubMed  Google Scholar 

  61. Manschot SM, Brands AM, vander Grond J, Kessels RP, Algra A, Kappelle LJ, et al. Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes. 2006;55:1106–13.

    Article  PubMed  CAS  Google Scholar 

  62. Meyer JS, Shaw TG. Cerebral blood flow in aging. In: Albert ML, editor. Clinical neurology of aging. New York: Oxford University Press; 1984. p. 178–96.

    Google Scholar 

  63. Dandona P, James IM, Newbury PA, Woollard ML, Beckett AG. Cerebral blood flow in diabetes mellitus: evidence of abnormal cerebrovascular reactivity. Br Med J. 1978;29:325–6.

    Article  Google Scholar 

  64. • Appelman AP, Exalto LG, van der Graaf Y, Biessels GJ, Mali WP, Geerlings MI. White matter lesions and brain atrophy: more than shared risk factors? A systematic review. Cerebrovasc Dis. 2009;28:227–42. Discuss mechanisms underlying cerebromicrovascualr disease and relationship to regional brain atrophy.

    Article  PubMed  Google Scholar 

  65. de Groot JC, de Leeuw FE, Breteler MM. Cognitive correlates of cerebral white matter changes. J Neural Transm Suppl. 1998;53:41–67.

    PubMed  Google Scholar 

  66. Kadoi Y, Hinohara H, Kunimoto F, Saito S, Ide M, Hiraoka H, et al. Diabetic patients have an impaired cerebral vasodilatory response to hypercapnia under propofol anesthesia. Stroke. 2003;34:2399–403.

    Article  PubMed  Google Scholar 

  67. Chimowitz MI, Furlan AJ, Jones SC, Sila CA, Lorig RL, Parandi L, et al. Transcranial Doppler assessment of cerebral perfusion reserve in patients with carotid occlusive disease and no evidence of cerebral infarction. Neurology. 1993;43:353–7.

    Article  PubMed  CAS  Google Scholar 

  68. Fulesdi B, Limburg M, Bereczki D, Kaplar M, Molnar C, Kappelmayer J, et al. Cerebrovascular reactivity and reserve capacity in type II diabetes mellitus. J Diabetes Complicat. 1999;13:191–9.

    Article  PubMed  CAS  Google Scholar 

  69. Kadoi Y, Saito S, Goto F, Fujita N. The effect of diabetes on the interrelationship between jugular venous oxygen saturation responsiveness to phenylephrine infusion and cerebrovascular carbon dioxide reactivity. Anesth Analg. 2004;99:325–31.

    Article  PubMed  CAS  Google Scholar 

  70. Griffith DN, Saimbi S, Lewis C, Tolfree S, Betteridge DJ. Abnormal cerebrovascular carbon dioxide reactivity in people with diabetes. Diabet Med. 1987;4:217–20.

    Article  PubMed  CAS  Google Scholar 

  71. Hidasi E, Kaplar M, Dioszeghy P, Bereczki D, Csiba L, Limburg B. No correlation between impairment of cerebrovascular reserve capacity and electrophysiologically assessed severity of neuropathy in noninsulin-dependent diabetes mellitus. J Diabetes Complicat. 2002;16:228–34.

    Article  PubMed  Google Scholar 

  72. Tkac I, Troscak M, Javorsky M, Petrik R, Tomcova M. Increased intracranial arterial resistance in patients with type 2 diabetes mellitus. Wien Klin Wochenschr. 2001;113:870–3.

    PubMed  CAS  Google Scholar 

  73. Christoforidis GA, Bourekas E, Baujan M, Abduljalil A, Kangarlu A, Spigos D, et al. High resolution MRI of the deep brain vascular anatomy at 8 Tesla: Susceptibility-based enhancement of the venous structures. J Comp Assist Tomogr 1999;857–866.

  74. Novak V, Kangarlu A, Abduljalil A, Novak P, Slivka A, Chakeres D, et al. Ultra high field MRI of subacute hemorrhagic stroke at 8 Tesla. J Comp Assist Tomogr. 2001;25:431–5.

    Article  CAS  Google Scholar 

  75. Novak V, Abduljalil AM, Novak P, Robitaille PM. High resolution ultra high field MRI of stroke. Magn Reson Imaging. 2005;23:539–48.

    Article  PubMed  Google Scholar 

  76. Whitaker CDS, Schmalbrock P, Dansher RA, Beversdorf DQ, Santi MS, Abduljalil AM, Truong TK, Chakeres DW, Scharre DW: Ultra-high field magnetic resonance imaging signal intensity change in Alzheimer’s disease.; 2001, p 323.15.

  77. Novak V, Christiforidis G. In: Robitaille PM, Berliner LJ, editors. Ultra high field magnetic resonance imaging (UHFMRI): Theory and applications, biological magnetic resonance. A series of contemporary topics and reviews. New York: Springer; 2006. p. 411–37.

    Google Scholar 

  78. Kario K, Ishikawa J, HOshide S, Matsui Y, Morinari M, Eguchi K, et al. Diabetic brain damage in hypertension: role of renin-angiotensin system. Hypertension. 2005;45:887–983.

    Article  PubMed  CAS  Google Scholar 

  79. Marstrand JR, Garde E, Rostrup E, Ring P, Rosenbaum S, Mortensen EL, et al. Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities. Stroke. 2002;34:972–6.

    Article  Google Scholar 

  80. DeCarli C, et al. The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults. Neurology. 1995;45:2077–84.

    Article  PubMed  CAS  Google Scholar 

  81. Mehagnoul-Schipper DJ, Colier WN, Jansen RW. Reproducibility of orthostatic changes in cerebral oxygenation in healthy subjects aged 70 years and older. Clin Physiol. 2001;21:77–84.

    Article  PubMed  CAS  Google Scholar 

  82. Novak V, Last D, Alsop DC, Abduljalil AM, Hu K, Lepicovsky L, et al. Cerebral blood flow velocity and periventricular white matter hyperintensities in type 2 diabetes. Diabetes Care. 2006;29:1529–34.

    Article  PubMed  Google Scholar 

  83. Enzinger C, Fazekas F, Ropele S, Schmidt R. Progression of cerebral white matter lesions – clinical and radiological considerations. J Neurol Sci. 2007;257:5–10.

    Article  PubMed  Google Scholar 

  84. Van Raamt RF, Appelman AP, Mali WP, Van der Graaf Y. SMART Study Group: Arterial blood flow to the brain in patients with vascular disease: the SMART Study. Radiology. 2006;240:515–21.

    Article  PubMed  Google Scholar 

  85. Xu WL, Qiu CX, Wahlin A, Winblad B, Fratiglioni L. Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology. 2004;63:1181–6.

    Article  PubMed  CAS  Google Scholar 

  86. Vermeer SE, Hollander M, Van Dijk EJ, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and white matter lesions increase stroke risk in the general population: The Rotterdam scan study. Stroke. 2003;34:1126–9.

    Article  PubMed  Google Scholar 

  87. Jokinen H, Kalska H, Ylikoski R, Madureira S, Verdelho A, Gouw A, et al. MRI-defined subcortical ischemic vascular disease: baseline clinical and neuropsychological findings. The LADIS study. Cerebrovasc Dis. 2009;27:336–44.

    Article  PubMed  Google Scholar 

  88. Sachdev PS, Chen X, Joscelyne A, Wen W, Brodaty H. Amygdala in stroke/transient ischemic attack patients and its relationship to cognitive impairment and psychopathology: the sydney stroke study. Am J Geriatr Psychiatry. 2007;15:487–96.

    Article  PubMed  Google Scholar 

  89. Guo X, Pantoni L, Simoni M, Bengtsson C, Bjorkelund C, Lissner L, et al. Blood pressure components and changes in relation to white matter lesions: a 32-year prospective population study. Hypertension. 2009;54:57–62.

    Article  PubMed  CAS  Google Scholar 

  90. van Swieten JC, van den Hout JH, van Ketel BA, Hijdra A, van Gijn J. Periventricular lesions in the white matter on magnetic resonance imaging in the elderly. A morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain. 1991;114:761–74.

    Article  PubMed  Google Scholar 

  91. Gouw AA, Seewann A, van der Flier WM, Barkhof F, Rozemuller AM, Scheltens P, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry. 2011;82:126–35.

    Article  PubMed  Google Scholar 

  92. Gouw AA, Seewann A, Vrenken H, van der Flier WM, Rozemuller JM, Barkhof F, et al. Heterogeneity of white matter hyperintensities in Alzheimer’s disease: post-mortem quantitative MRI and neuropathology. Brain. 2008;131:3286–98.

    Article  PubMed  CAS  Google Scholar 

  93. Gouw AA, van der Flier WM, Pantoni L, Inzitari D, Erkinjuntti T, Wahlund LO, et al. On the etiology of incident brain lacunes: longitudinal observations from the LADIS study. Stroke. 2008;39:3083–5.

    Article  PubMed  Google Scholar 

  94. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 2001;32:1318–22.

    Article  PubMed  CAS  Google Scholar 

  95. Yang Y, Hill JW, Rosenberg GA. Multiple roles of metalloproteinases in neurological disorders. Prog Mol Biol Transl Sci. 2011;99:241–63.

    Article  PubMed  CAS  Google Scholar 

  96. Enzinger C, Fazekas F, Matthews PM, Ropele S, Schmidt H, Smith S, et al. Risk factors for progression of brain atrophy in aging: 6-year follow-up of normal subjects. Neurology. 2005;64:1704–11.

    Article  PubMed  CAS  Google Scholar 

  97. Guralnik JM, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49:M85–94.

    PubMed  CAS  Google Scholar 

  98. Staessen JA, Richart T, Birkenhager WH. Less atherosclerosis and lower blood pressure for a meaningful life perspective with more brain. Hypertension. 2007;49:389–400.

    Article  PubMed  CAS  Google Scholar 

  99. Alsop DC, Dai W, Grossman M, Detre JA. Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer’s disease. J Alzheimers Dis. 2010;20:871–80.

    PubMed  Google Scholar 

  100. Candelario-Jalil E, Thompson J, Taheri S, Grossetete M, Adair JC, Edmonds E, et al. Matrix metalloproteinases are associated with increased blood-brain barrier opening in vascular cognitive impairment. Stroke. 2011;42:1345–50.

    Article  PubMed  CAS  Google Scholar 

  101. Razay G, Vreugdenhil A, Wilcock G. Obesity, abdominal obesity and Alzheimer disease. Dement Geriatr Cogn Disord. 2006;22:173–6.

    Article  PubMed  Google Scholar 

  102. Richard E, Gouw AA, Scheltens P, van Gool WA. Vascular care in patients with Alzheimer disease with cerebrovascular lesions slows progression of white matter lesions on MRI: the evaluation of vascular care in Alzheimer’s disease (EVA) study. Stroke. 2010;41:554–6.

    Article  PubMed  Google Scholar 

  103. Vanhanen M, Koivisto K, Moilanen L, Helkala EL, Hanninen T, Soininen H, et al. Association of metabolic syndrome with Alzheimer disease: a population-based study. Neurology. 2006;67:843–7.

    Article  PubMed  CAS  Google Scholar 

  104. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485:512–6.

    Article  PubMed  CAS  Google Scholar 

  105. Bouchard P, Ghitescu LD, Bendayan M. Morpho-functional studies of the blood-brain barrier in streptozotocin-induced diabetic rats. Diabetologia. 2002;45:1017–25.

    Article  PubMed  CAS  Google Scholar 

  106. Tomassoni D, Bellagamba G, Postacchini D, Venarucci D, Amenta F. Cerebrovascular and brain microanatomy in spontaneously hypertensive rats with streptozotocin-induced diabetes. Clin Exp Hypertens. 2004;26:305–21.

    Article  PubMed  Google Scholar 

  107. Li W, Prakash R, Kelly-Cobbs AI, Ogbi S, Kozak A, El-Remessy AB, et al. Adaptive cerebral neovascularization in a model of type 2 diabetes: relevance to focal cerebral ischemia. Diabetes. 2010;59:228–35.

    Article  PubMed  Google Scholar 

  108. Li W, Kelly-Cobbs AI, Mezzetti EM, Fagan SC, Ergul A. Endothelin-1-mediated cerebrovascular remodeling is not associated with increased ischemic brain injury in diabetes. Can J Physiol Pharmacol. 2010;88:788–95.

    Article  PubMed  CAS  Google Scholar 

  109. Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci. 2006;21:2653–8.

    Article  CAS  Google Scholar 

  110. MOnnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295:1681–7.

    Article  PubMed  CAS  Google Scholar 

  111. Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006;113:1888–904.

    Article  PubMed  Google Scholar 

  112. Kevil CG, Orr AW, Langston W, Mickett K, Murphy-Ullrich J, Patel RP, et al. Intercellular adhesion molecule-1 (ICAM-1) regulates endothelial cell motility through a nitric oxide-dependent pathway. J Biol Chem. 2004;279:19230–8.

    Article  PubMed  CAS  Google Scholar 

  113. Kevil CG, Pruitt H, Kavanagh TJ, Wilkerson J, Farin F, Moellering D, et al. Regulation of endothelial glutathione by ICAM-1: implications for inflammation. FASEB J. 2004;18:1321–3.

    PubMed  CAS  Google Scholar 

  114. Koch AE, Hallorank MM, Haskell CJ, Shah M, Polverini PJ. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature. 1995;376:517–9.

    Article  PubMed  CAS  Google Scholar 

  115. Heikkila O, Lundbom N, Timonen M, Groop PH, Heikkinen S, Makimattila S. Hyperglycaemia is associated with changes in the regional concentrations of glucose and myo-inositol within the brain. Diabetologia. 2009;52:534–40.

    Article  PubMed  CAS  Google Scholar 

  116. Makimattila S, Malmberg-Ceder K, Hakkinen AM, Vuori K, Salonen O, Summanen P, et al. Brain metabolic alterations in patients with type 1 diabetes-hyperglycemia-induced injury. J Cereb Blood Flow Metab. 2004;24:1393–9.

    Article  PubMed  Google Scholar 

  117. Brownlee M. The pathobiology of diabetic complications. Diabetes. 2006;54:1615–25.

    Article  Google Scholar 

  118. Vazquez LA, Amado JA, Garcia-Unzueta MT, Quirce R, Jimenez-Bonilla JF, Pazos F, et al. Decreased plasma endothelin-1 levels in asymptomatic type I diabetic patients with regional cerebral hypoperfusion assessed by Spect. J Diabetes Complications. 1999;13:325–31.

    Article  PubMed  CAS  Google Scholar 

  119. Keymeulen B, Jacobs A, de Metx K, de Sadeleer C, Bossuyt A, Somers G. Regional cerebral hypoperfusion in long-term type 1 (insulin-dependent) diabetic patients: relation to hypoglycaemic event. Nucl Med Commun. 1995;16:10–6.

    Article  PubMed  CAS  Google Scholar 

  120. Kannel WB, Kannel C, Paffenbarger RSJ, Cupples LA. Heart rate and cardiovascular mortality: the framingham study. Am Heart J. 1987;113:1494.

    Google Scholar 

  121. Gunning-Dixon FM, Raz N. The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology. 2000;14:224–32.

    Article  PubMed  CAS  Google Scholar 

  122. Katsura K, Rodriguez de Turco EB, Siesjo BK, Bazan NG. Effects of hyperglycemia and hypercapnia on lipid metabolism during complete brain ischemia. Brain Res. 2004;1030:133–40.

    Article  PubMed  CAS  Google Scholar 

  123. Pasquier F, Boulogne A, Leys D, Fontaine P. Diabetes mellitus and dementia. Diabetes Metab. 2006;32:403–14.

    Article  PubMed  CAS  Google Scholar 

  124. Razay G, Williams J, King E, Smith AD, Wilcock G. Blood pressure, dementia and Alzheimer’s disease: the OPTIMA longitudinal study. Dement Geriatr Cogn Disord. 2009;28:70–4.

    Article  PubMed  CAS  Google Scholar 

  125. Williamson JD, Miller ME, Bryan RN, Lazar RM, Coker LH, Johnson J, et al. The action to control cardiovascular risk in diabetes memory in diabetes study (ACCORD-MIND): rationale, design, and methods. Am J Cardiol. 2007;99:112i–22i.

    Article  PubMed  Google Scholar 

  126. Forette F, Seux ML, Staessen JA, Thijs L, Birkenhager WH, Babarskiene MR, et al. Prevention of dementia in randomised double-blind placebo-controlled systolic hypertension in Europe (Syst-Eur) trial. Lancet. 1998;352:1347–51.

    Article  PubMed  CAS  Google Scholar 

  127. Forette F, Seux ML, Staessen JA, Thijs L, Babarskiene MR, Babeanu S, et al. The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern Med. 2002;162:2046–52.

    Article  PubMed  Google Scholar 

  128. Hanon O, Forette F. Prevention of dementia: lessons from SYST-EUR and PROGRESS. J Neurol Sci. 2004;226:71–4.

    Article  PubMed  Google Scholar 

  129. Lithell H, Hansson L, Skoog I, Elmfeldt D, Hofman A, Olofsson B, et al. The Study on COgnition and Prognosis in the Elderly (SCOPE); outcomes in patients not receiving add-on therapy after randomization. J Hypertens. 2004;22:1605–12.

    Article  PubMed  CAS  Google Scholar 

  130. Lithell H, Hansson L, Skoog I, Elmfeldt D, Hofman A, Olofsson B, et al. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens. 2003;21:875–86.

    Article  PubMed  CAS  Google Scholar 

  131. Meyer JS, Rauch G, Rauch RA, Haque A. Risk factors for cerebral hypoperfusion, mild cognitive impairment, and dementia. Neurobiol Aging. 2000;21:161–9.

    Article  PubMed  CAS  Google Scholar 

  132. Nagai M, HOshide S, Kario K. Hypertension and dementia. Am J Hypertens. 2010;23:116–24.

    Article  PubMed  Google Scholar 

  133. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256:240–6.

    Article  PubMed  CAS  Google Scholar 

  134. Cherbuin N, Reglade-Meslin C, Kumar R, Jacomb P, Easteal S, Christensen H, et al. Risk factors of transition from normal cognition to mild cognitive disorder: the PATH through Life Study. Dement Geriatr Cogn Disord. 2009;28:47–55.

    Article  PubMed  Google Scholar 

  135. Beason-Held LL, Moghekar A, Zonderman AB, Kraut MA, Resnick SM. Longitudinal changes in cerebral blood flow in the older hypertensive brain. Stroke. 2007;38:1766–73.

    Article  PubMed  Google Scholar 

  136. Beason-Held LL, Kraut MA, Resnick SM. I. Longitudinal changes in aging brain function. Neurobiol Aging. 2008;29:483–96.

    Article  PubMed  CAS  Google Scholar 

  137. Beason-Held LL, Kraut MA, Resnick SM. II. Temporal patterns of longitudinal change in aging brain function. Neurobiol Aging. 2008;29:497–513.

    Article  PubMed  CAS  Google Scholar 

  138. Wolf PA, Beiser A, Elias MF, Au R, Vasan RS, Seshadri S. Relation of obesity to cognitive function: importance of central obesity and synergistic influence of concomitant hypertension. The framingham heart study. Curr Alzheimer Res. 2007;4:111–6.

    Article  PubMed  CAS  Google Scholar 

  139. Selim M, Jones R, Novak P, Zhao P, Novak V. The effects of body mass index on cerebral blood flow velocity. Clin Auton Res. 2008;18:331–8.

    Article  PubMed  Google Scholar 

  140. Knopman DS, Mosley TH, Catellier DJ, Coker LH. Fourteen-year longitudinal study of vascular risk factors, APOE genotype, and cognition: the ARIC MRI Study. Alzheimers Dement. 2009;5:207–14.

    Article  PubMed  Google Scholar 

  141. • Beason-Held LL, Thambisetty M, Deib G, Sojkova J, Landman BA, Zonderman AB, et al. Baseline cardiovascular risk predicts subsequent changes in resting brain function. Stroke. 2012;43:1542–7. A composite cardiovascular risk factor score, as well as it individual compontenst (e.g. age,diabetes and hypertension) were predictive of brain changes and functional decline.

    Article  PubMed  Google Scholar 

  142. Stewart R, Xue QL, Masaki K, Petrovitch H, Ross GW, White LR, et al. Change in blood pressure and incident dementia: a 32-year prospective study. Hypertension. 2009;54:233–40.

    Article  PubMed  CAS  Google Scholar 

  143. Launer LJ, Hughes T, Yu B, Masaki K, Petrovitch H, Ross GW, et al. Lowering midlife levels of systolic blood pressure as a public health strategy to reduce late-life dementia: perspective from the Honolulu Heart Program/Honolulu Asia Aging Study. Hypertension. 2010;55:1352–9.

    Article  PubMed  CAS  Google Scholar 

  144. Kitagawa K, Oku N, Kimura Y, Yagita Y, Sakaguchi M, Hatazawa J, et al. Relationship between cerebral blood flow and later cognitive decline in hypertensive patients with cerebral small vessel disease. Hypertens Res. 2009;32:816–20.

    Article  PubMed  Google Scholar 

  145. • Muller M, Van der Graaf Y, Visseren FL, Mali WP, Geerlings MI, SMART study group. Hypertension and longitudinal changes in cerebral blood flow: The SMART-MR study. Ann Neurol. 2012;71:825–33. This study has shown prospectively the relationship between reduction in cerebral blood flow and dementia.

    Article  PubMed  Google Scholar 

  146. Schmidt R, Scheltens P, Erkinjuntti T, Pantoni L, Markus HS, Wallin A, et al. White matter lesion progression: a surrogate endpoint for trials in cerebral small-vessel disease. Neurology. 2004;63:139–44.

    Article  PubMed  CAS  Google Scholar 

  147. Schmidt R, Launer LJ, Nilsson LG, Pajak A, Sans S, Berger K, et al. CASCADE Consortium: magnetic resonance imaging of the brain in diabetes: the cardiovascular determinants of dementia (CASCADE) Study. Diabetes. 2004;53:687–92.

    Article  PubMed  CAS  Google Scholar 

  148. Looi JC, Sachdev PS. Differentiation of vascular dementia from AD on neuropsychological tests. Neurology. 1999;53:670–8.

    Article  PubMed  CAS  Google Scholar 

  149. Tell GS, Lefkowitz DS, Diehr P, Elster AD. Relationship between balance and abnormalities in cerebral magnetic resonance imaging in older adults. Arch Neurol. 1998;55:73–9.

    Article  PubMed  CAS  Google Scholar 

  150. Whitman GT, Tang T. A prospective study of cerebral white matter abnormalities in older people with gait dysfunction. Neurology. 2001;57:990–4.

    Article  PubMed  CAS  Google Scholar 

  151. Skyler JS, Bergenstal R, Bonow RO, Buse J, Deedwania P, Gale EA, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American diabetes association and a scientific statement of the American college of cardiology foundation and the american heart association. Circulation. 2009;119:351–7.

    Article  PubMed  Google Scholar 

  152. Havas S. The ACCORD Trial and control of blood glucose level in type 2 diabetes mellitus: time to challenge conventional wisdom. Arch Intern Med. 2009;169:150–4.

    Article  PubMed  Google Scholar 

  153. Radermecker RP, Philips JC, Jandrain B, Paquot N, Scheen AJ. Blood glucose control and cardiovascular disease in patients with type 2 diabetes. Results of ACCORD, ADVANCE and VA-Diabetes trials. Rev Med Liege. 2008;63:511–8.

    PubMed  CAS  Google Scholar 

  154. Najman DM. Intensive therapy of type 2 diabetes (ACCORD trial) (OCTOBER 2008). Cleve Clin J Med. 2009;76:83–4.

    Article  PubMed  Google Scholar 

  155. Jimenez-Bonilla JF, Carril JM, Quirce R, Gomez-Barquin R, Amado JA, Gutierrez-Mendiguchia C. Assessment of cerebral blood flow in diabetic patients with no clinical history of neurological disease. Nucl Med Commun. 1996;17:790–4.

    Article  PubMed  CAS  Google Scholar 

  156. Wakisaka M, Nagamachi S, Inoue K, Morotomi Y, Nunoi K, Fujishima M. Reduced regional cerebral blood flow in aged noninsulin-dependent diabetic patients with no history of cerebrovascular disease: evaluation by N-isopropyl-123I-p-iodoamphetamine with single-photon emission computed tomography. J Diabetes Complications. 1990;4:170–4.

    Article  CAS  Google Scholar 

  157. MacLeod KM, Gold AE, Ebmeier KP, Hepburn DA, Deary IJ, Goodwin GM, et al. The effects of acute hypoglycemia on relative cerebral blood flow distribution in patients with type I (insulin-dependent) diabetes and impaired hypoglycemia awareness. Metabolism. 1996;45:974–80.

    Article  PubMed  CAS  Google Scholar 

  158. Cranston I, Marsden P, Matyka K, Evans M, Lomas J, Sonksen P, et al. Regional differences in cerebral blood flow and glucose utilization in diabetic man: the effect of insulin. J Cereb Blood Flow Metab. 1998;18:130–40.

    Article  PubMed  CAS  Google Scholar 

  159. Musen G, Lyoo IK, Sparks CR, Weringer K, Hwang J, Ryan CM, et al. Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes. 2006;55:326–33.

    Article  PubMed  CAS  Google Scholar 

  160. Adler GK, Bonyhay I, Failing H, Waring E, Dotson S, Freeman R. Antecedent hypoglycemia impairs autonomic cardiovascular function: implications for rigorous glycemic control. Diabetes. 2009;58:360–6.

    Article  PubMed  CAS  Google Scholar 

  161. Eigenbrodt ML, Rose KM, Couper DJ, Arnett DK, Smith R, Jones D. Orthostatic hypotension as a risk factor for stroke. The Atherosclerosis Risk in Communities (ARIC) Study, 1987–1996. Stroke. 2000;31:2307–13.

    Article  PubMed  CAS  Google Scholar 

  162. Yap PL, Niti M, Yap KB, Ng TP. Orthostatic hypotension, hypotension and cognitive status: early comorbid markers of primary dementia? Dement Geriatr Cogn Disord. 2008;26:239–46.

    Article  PubMed  Google Scholar 

  163. Novak V, Haertle M, Zhao P, Hu K, Munshi M, Novak P, et al. White matter hyperintensities and dynamics of postural control. Magnetic Resonance Imaging. 2009;27:752–9.

    Article  PubMed  Google Scholar 

  164. Fedorowski A, Stavenow L, Hedblad B, Berglund G, Nilsson PM, Melander O. Consequences of orthostatic blood pressure variability in middle-aged men (The Malmo Preventive Project). J Hypertens. 2010;28:551–9.

    Article  PubMed  CAS  Google Scholar 

  165. Kahonen-Vare M, Brunni-Hakala S, Lindroos M, Pitkala K, Strandberg T, Tilvis R. Left ventricular hypertrophy and blood pressure as predictors of cognitive decline in old age. Aging Clin Exp Res. 2004;16:147–52.

    PubMed  Google Scholar 

  166. Romero-Ortuno R, Kenny RA: The frailty index in Europeans: association with age and mortality. Age Ageing 2012;Apr 19:Epub.

  167. Waldstein SR, Brown JR, Maier KJ, Katzel LI. Diagnosis of hypertension and high blood pressure levels negatively affect cognitive function in older adults. Ann Behav Med. 2005;29:174–80.

    Article  PubMed  Google Scholar 

  168. Pendlebury ST, Cuthbertson FC, Welch SJ, Mehta Z, Rothwell PM. Underestimation of cognitive impairment by mini-mental state examination versus the montreal cognitive assessment in patients with transient ischemic attack and stroke: a population-based study. Stroke. 2010;41:1290–3.

    Article  PubMed  Google Scholar 

  169. Oveisgharan S, Hachinski V. Hypertension, executive dysfunction, and progression to dementia: the canadian study of health and aging. Arch Neurol. 2010;67:187–92.

    Article  PubMed  Google Scholar 

  170. Hajjar I, Zhao P, Alsop D, Abduljalil A, Selim M, Novak P, et al. Association of blood pressure elevation and nocturnal dipping with brain atrophy, perfusion and functional measures in stroke and nonstroke individuals. Am J Hypertens. 2010;23:17–23.

    Article  PubMed  Google Scholar 

  171. Hajjar I, Yang F, Sorond F, Jones RN, Milberg W, Cupples LA, et al. A novel aging phenotype of slow gait, impaired executive function, and depressive symptoms: relationship to blood pressure and other cardiovascular risks. J Gerontol A Biol Sci Med Sci. 2009;64:994–1001.

    Article  PubMed  Google Scholar 

  172. Bejan-Angoulvant T, Saadatian-Elahi M, Wright JM, Schron EB, Lindholm LH, Fagard R, et al. Treatment of hypertension in patients 80 years and older: the lower the better? A meta-analysis of randomized controlled trials. J Hypertens. 2010;28:1366–72.

    Article  PubMed  CAS  Google Scholar 

  173. Li NC, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE, et al. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ. 2010;340:b5465.

    Article  PubMed  Google Scholar 

  174. Fogari R, Mugellini A, Zoppi A, Derosa G, Pasotti C, Fogari E, et al. Influence of losartan and atenolol on memory function in very elderly hypertensive patients. J Hum Hypertens. 2003;17:781–5.

    Article  PubMed  CAS  Google Scholar 

  175. Fogari R, Mugellini A, Zoppi A, Lazzari P, Destro M, Rinaldi A, et al. Effect of telmisartan/hydrochlorothiazide vs lisinopril/hydrochlorothiazide combination on ambulatory blood pressure and cognitive function in elderly hypertensive patients. J Hum Hypertens. 2006;20:177–85.

    Article  PubMed  CAS  Google Scholar 

  176. Tedesco MA, Ratti G, Mennella S, Manzo G, Grieco M, Rainone AC, et al. Comparison of losartan and hydrochlorothiazide on cognitive function and quality of life in hypertensive patients. Am J Hypertens. 1999;12:1130–4.

    Article  PubMed  CAS  Google Scholar 

  177. Sink KM, Leng X, Williamson J, Kritchevsky SB, Yaffe K, Kuller L, et al. Angiotensin-converting enzyme inhibitors and cognitive decline in older adults with hypertension: results from the Cardiovascular Health Study. Arch Intern Med. 2009;169:1195–202.

    Article  PubMed  CAS  Google Scholar 

  178. von Bohlen, HO. The renin-angiotensin system in the mammalian central nervous system. Curr Protein Pept Sci. 2005;6:355–71.

    Article  Google Scholar 

  179. Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med. 2010;2:247–57.

    Article  PubMed  CAS  Google Scholar 

  180. Fleegal-DeMotta MA, Doghu S, Banks WA. Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2009;29:640–7.

    Article  PubMed  CAS  Google Scholar 

  181. Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol. 2003;35:881–900.

    Article  PubMed  CAS  Google Scholar 

  182. Alvarez A, Cerda-Nicolas M, Naim Abu NY, Mata M, Issekutz AC, Panes J, et al. Direct evidence of leukocyte adhesion in arterioles by angiotensin II. Blood. 2004;104:402–8.

    Article  PubMed  CAS  Google Scholar 

  183. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52:415–72.

    PubMed  Google Scholar 

  184. Saavedra JM, Ando H, Armando I, Baiardi G, Bregonzio C, Jezova M, et al. Brain angiotensin II, an important stress hormone: regulatory sites and therapeutic opportunities. Ann N Y Acad Sci. 2004;1018:76–84.

    Article  PubMed  CAS  Google Scholar 

  185. Saavedra JM, Benicky J. Brain and peripheral angiotensin II play a major role in stress. Stress. 2007;10:185–93.

    Article  PubMed  CAS  Google Scholar 

  186. Saavedra JM. Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol Neurobiol. 2005;25:485–512.

    Article  PubMed  CAS  Google Scholar 

  187. Zhou J, Ando H, Macova M, Dou J, Saavedra JM. Angiotensin II AT1 receptor blockade abolishes brain microvascular inflammation and heat shock protein responses in hypertensive rats. J Cereb Blood Flow Metab. 2005;25:878–86.

    Article  PubMed  CAS  Google Scholar 

  188. Seltzer A, Bregonzio C, Armando I, Baiardi G, Saavedra JM. Oral administration of an AT1 receptor antagonist prevents the central effects of angiotensin II in spontaneously hypertensive rats. Brain Res. 2004;1028:9–18.

    Article  PubMed  CAS  Google Scholar 

  189. Pelisch N, Hosomi N, Ueno M, Nakano D, Hitomi H, Mogi M, et al. Blockade of AT1 receptors protects the blood-brain barrier and improves cognition in Dahl salt-sensitive hypertensive rats. Am J Hypertens. 2011;24:362–8.

    Article  PubMed  CAS  Google Scholar 

  190. Pelisch N, Hosomi N, Ueno M, Masugata H, Murao K, Hitomi H, et al. Systemic candesartan reduces brain angiotensin II via downregulation of brain renin-angiotensin system. Hypertens Res. 2010;33:161–4.

    Article  PubMed  CAS  Google Scholar 

  191. Smeda JS, McGuire JJ. Effects of poststroke losartan versus captopril treatment on myogenic and endothelial function in the cerebrovasculature of SHRsp. Stroke. 2007;38:1590–6.

    Article  PubMed  CAS  Google Scholar 

  192. Smeda JS, Daneshtalab N. The effects of poststroke captopril and losartan treatment on cerebral blood flow autoregulation in SHRsp with hemorrhagic stroke. J Cereb Blood Flow Metab. 2011;31:476–85.

    Article  PubMed  CAS  Google Scholar 

  193. Saavedra JM, de Oliveira AM, Johren O, Viswanathan M. Brain angiotensin II and related receptors: new developments. Adv Exp Med Biol. 1996;396:247–52.

    PubMed  CAS  Google Scholar 

  194. Saavedra JM: Angiotensin II AT(1) Receptor Blockers Ameliorate Inflammatory Stress: A Beneficial Effect for the Treatment of Brain Disorders. Cell Mol Neurobiol 2011.

  195. Saavedra JM, Benicky J, Zhou J. Angiotensin II: multitasking in the brain. J Hypertens Suppl. 2006;24:S131–7.

    Article  PubMed  CAS  Google Scholar 

  196. Candido R, Allen TJ, Lassila M, Cao Z, Thallas V, Cooper ME, et al. Irbesartan but not amlodipine suppresses diabetes-associated atherosclerosis. Circulation. 2004;109:1536–42.

    Article  PubMed  CAS  Google Scholar 

  197. • Barzilay JI, Gao P, O’Donnell M, Mann JF, Anderson C, Fagard R, et al. Albuminuria and decline in cognitive function: The ONTARGET/TRANSCEND studies. Arch Intern Med. 2011;171:142–50.

    Article  PubMed  Google Scholar 

  198. Viberti G, Wheeldon NM. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect. Circulation. 2002;106:672–8.

    Article  PubMed  CAS  Google Scholar 

  199. Trenkwalder P. The Study on COgnition and Prognosis in the Elderly (SCOPE)–recent analyses. J Hypertens Suppl. 2006;24:S107–14.

    Article  PubMed  CAS  Google Scholar 

  200. Cheung BM, Cheung GT, Lauder IJ, Lau CP, Kumana CR. Meta-analysis of large outcome trials of angiotensin receptor blockers in hypertension. J Hum Hypertens. 2006;20:37–43.

    Article  PubMed  CAS  Google Scholar 

  201. Pedreanez A, Arcaya JL, Carrizo E, Rincon J, Viera N, Pena C, et al. Experimental depression induces renal oxidative stress in rats. Physiol Behav. 2011;104:1002–9.

    Article  PubMed  CAS  Google Scholar 

  202. Wright JW, Harding JW. The angiotensin AT4 receptor subtype as a target for the treatment of memory dysfunction associated with Alzheimer’s disease. J Renin Angiotensin Aldosterone Syst. 2008;9:226–37.

    Article  PubMed  CAS  Google Scholar 

  203. • Drake C, Boutin H, Jones MS, Denes A, McColl BW, Selvarajah JR, et al. Brain inflammation is induced by co-morbidities and risk factors for stroke. Brain Behav Immun. 2011;6:1113–22. Evidence for relationship between bran inflammation and altered vascular function in associated with co-morbidities.

    Article  CAS  Google Scholar 

  204. Hernandez-Fonseca JP, Rincon J, Pedreanez A, Viera N, Arcaya JL, Carrizo E, et al. Structural and ultrastructural analysis of cerebral cortex, cerebellum, and hypothalamus from diabetic rats. Exp Diabetes Res. 2009;2009:329632.

    Article  PubMed  Google Scholar 

  205. Sironi L, Calvio AM, Arnaboldi L, Corsini A, Parolari A, de Gasparo M, et al. Effect of valsartan on angiotensin II-induced plasminogen activator inhibitor-1 biosynthesis in arterial smooth muscle cells. Hypertension. 2001;37:961–6.

    Article  PubMed  CAS  Google Scholar 

  206. Sironi L, Gelosa P, Guerrini U, Banfi C, Crippa V, Brioschi M, et al. Anti-inflammatory effects of AT1 receptor blockade provide end-organ protection in stroke-prone rats independently from blood pressure fall. J Pharmacol Exp Ther. 2004;311:989–95.

    Article  PubMed  CAS  Google Scholar 

  207. Conen D, Everett BM, Glynn RJ, Ridker PM. Effect of valsartan compared with valsartan/hydrochlorothiazide on plasma levels of cellular adhesion molecules: the Val-MARC trial. Heart. 2008;94:e13.

    Article  PubMed  CAS  Google Scholar 

  208. Shrikhande GV, Scali ST, da Silva CG, Damrauer SM, Csizmadia E, Putheti P, et al. O-glycosylation regulates ubiquitination and degradation of the anti-inflammatory protein A20 to accelerate atherosclerosis in diabetic ApoE-null mice. PLoS One. 2010;5:e14240.

    Article  PubMed  CAS  Google Scholar 

  209. Fogari R, Mugellini A, Zoppi A, Marasi G, Pasotti C, Poletti L, et al. Effects of valsartan compared with enalapril on blood pressure and cognitive function in elderly patients with essential hypertension. Eur J Clin Pharmacol. 2004;59:863–8.

    Article  PubMed  CAS  Google Scholar 

  210. Kjeldsen SE, Julius S, Mancia G, McInnes GT, Hua T, Weber MA, et al. Effects of valsartan compared to amlodipine on preventing type 2 diabetes in high-risk hypertensive patients: the VALUE trial. J Hypertens. 2006;24:1405–12.

    Article  PubMed  CAS  Google Scholar 

  211. Julius S, Weber MA, Kjeldsen SE, McInnes GT, Zanchetti A, Brunner HR, et al. The Valsartan Antihypertensive Long-Term Use Evaluation (VALUE) trial: outcomes in patients receiving monotherapy. Hypertension. 2006;48:385–91.

    Article  PubMed  CAS  Google Scholar 

  212. Sever P. The VALUE trial: a commentary. J Renin Angiotensin Aldosterone Syst. 2004;5:99–101.

    Article  PubMed  Google Scholar 

  213. de Maat MP, Kluft C, Gram J, Jespersen J. Angiotensin-converting enzyme inhibitor trandolapril does not affect C-reactive protein levels in myocardial infarction patients. Circulation. 2003;108:e113.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

V. Novak was supported by grants 1R01AG028076-A2 and 1P01AG028717-01A2 from the National Institute on Aging, NIH, and by grant 1R21DK084463-01A1 from the National Institute of Diabetes and Digestive and Kidney Diseases, NIH.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Competing Interests

The author declares no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Novak.

Additional information

Author Contributions

V. Novak wrote the article, researched data to include in the manuscript, reviewed and edited the manuscript prior to submission, and revised the manuscript in response to the peer-reviewers’ comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, V. Cognition and Hemodynamics. Curr Cardiovasc Risk Rep 6, 380–396 (2012). https://doi.org/10.1007/s12170-012-0260-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-012-0260-2

Keywords

Navigation