Skip to main content
Log in

Frequency-domain analysis of cerebral autoregulation from spontaneous fluctuations in arterial blood pressure

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The dynamic relationship between spontaneous fluctuations of arterial blood pressure (ABP) and corresponding changes in crebral blood flow velocity (CBFV) is studied in a population of 83 neonates. Static and dynamic methods are used to identify two subgroups showing either normal (group A, n=23) or impaired (group B, n=21) cerebral autoregulation. An FFT algorithm is used to estimate the coherence and transfer function between CBFV and ABP. The significance of the linear dependence between these two variables in demonstrated by mean values of squared coherence >0.50 for both groups in the frequency range 0.02–0.50 Hz. However, group A has significanlty smaller coherences than group B in the frequency ranges 0.02–0.10 Hz and 0.33–0.49 Hz. The phase response of group A is also significantly more positive than that of group B, with slopes of 9.3±1.05 and 1.80±1.2 rad Hz−1, respectively. The amplitude frequency response is also significantly smaller for group A in relation to group B for the frequency range 0.25–0.43 Hz. These results suggest that transfer function analysis may be able to identify different components of cerebral autoregulation and also provide a deeper understanding of recent findings by other investigators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ν(n):

time-domain sequence of CBFV values

p(n) :

time-domain sequence of ABP values

V 0 :

mean value of CBFV

P 0 :

mean value of ABP

R 0 :

mean value of resistance-area product

V(f) :

Fourier transform ofv(n)

P(f) :

Fourier transform ofp(n)

G pv(f) :

cross-spectrum betweenV(f) andP(f)

G xx(f):

power spectrum of CBFV or ABP

γ2(f):

coherence function

H(f) :

transfer function

H R(f) :

real part ofH(f)

|H(f)|:

frequency response of transfer function (amplitude)

ϕ(f):

phase of frequency response

h pv(n):

impulse response ofv(n) with inputp(n)

References

  • Aaslid, R. (1987): ‘Visually evoked dynamic blood flow response of the human cerebral circulation’,Stroke,18, pp. 771–775

    Google Scholar 

  • Aaslid, R., Lindegard, K. F., Sorteberg, W., andNornes, H. (1989): ‘Cerebral autoregulation dynamics in humans’,Stroke,20, pp. 45–52

    Google Scholar 

  • Bendat, J. S. andPiersol, A. G. (1986): ‘Random data analysis and measurement procedures (John Wiley & Sons, 2nd edn., New York)

    MATH  Google Scholar 

  • Birch, A. A., Dirnhuber, M. J., Hartley-Davies, R., Iannotti, F., andNeilDwyer, G. (1995): ‘Assessment of autoregulation by means of periodic changes in blood pressure’,Stroke,26, pp 834–837

    Google Scholar 

  • Cohen, J. (1960): ‘A coefficient of agreement for nominal scales’,Educ. Psychol. Meas.,XX, pp. 37–46

    Google Scholar 

  • DeBoer, R. W., Karemaker, J. M., andStrackee, J. (1985): ‘Relationships between short-term blood-pressure fluctuations and heart-rate variability in resting subjects. I: a spectral analysis approach’,Med. Biol. Eng. Comput.,23, pp. 352–358

    Article  Google Scholar 

  • Dewey, R. C., Pieper, H. P., andHunt, W. E. (1974): ‘Experimental cerebral hemodynamics. Vasomotor tone, critical closing pressure, and vascular bed resistance’,J. Neurosurg.,41, pp. 597–606

    Article  Google Scholar 

  • Diehl, R. R., Linden, D., Lucke, D. andBerlit, P. (1995): ‘Phase relationship between crebral blood flow velocity and blood pressure. A clinical test of autoreguation’,Stroke,26, pp. 1801–1804.

    Google Scholar 

  • DiRienzo, M., Castiglioni, P., Parati, G., Mancia, G., andPedotti, A. (1996): ‘Effects of sino-aortic denervation on spectral characteristics of blood pressure and pulse interval variability: a wide-band approach’,Med. Biol. Eng. Comput.,34, pp. 133–141

    Article  Google Scholar 

  • Evans, D. H., Levene, M. I., Shortland, D. B. andArcher, L. N. (1988): ‘Resistance index, blood flow velocity, and resistance area product in the cerebral arteries of very low birth weight infants during the first week of life’,Ultrasound Med. Biol.,14, pp. 103–110

    Article  Google Scholar 

  • Evans, D. H., Schlindwein, F. S., andLevene, M. I. (1989): ‘An automatic system for capturing and processing ultrasonic Doppler signals and blood pressure signals’,Clin. Phys. Physiol. Meas.,10, pp. 241–251

    Article  Google Scholar 

  • Fisher, R. A. (1948): ‘Combining independent tests of significance’,Am. Statistician,2, p. 30

    Article  Google Scholar 

  • Giller, C. A. (1990): ‘The frequency-dependent behavior of cerebral autoregulation’,Neurosurgery,27, pp. 362–368

    Article  Google Scholar 

  • Jorch, G. andJorch, N. (1987): ‘Failure of autoregulation of cerebral blood flow in neonates studies by pulsed Doppler ultrasound of the internal carotid artery’,Eur. J. Pediatr.,146, pp. 468–472

    Article  Google Scholar 

  • Newell, D. W., Aaslid, R., Lam, A., Mayberg, T. S. andWinn, H. R. (1994): ‘Comparison of flow and velocity during dynamic autoregulation testing in humans’,Stroke,25, pp. 793–797

    Google Scholar 

  • Panerai, R. B., Coughtrey, H., Rennie, J. M. andEvans, D. H. (1993): ‘A model of the instantaneous pressure-velocity relationships of the neonatal cerebral circulation’,Physiol. Meas.,14, pp. 411–418

    Article  Google Scholar 

  • Panerai, R. B., Kelsall, A. W. R., Rennie, J. M. andEvans, D. H. (1995): ‘Cerebral autoregulation dynamics in premature newboms’,Stroke,26, pp. 74–80

    Google Scholar 

  • Panerai, R. B., Kelsall, A. W. R., Rennie, J. M. andEvans, D. H. (1996): ‘Analysis of cerebral blood flow autoregulation in neonates’,IEEE Trans.,BME-43, pp. 779–788

    Google Scholar 

  • Paulson, O. B., Strandgaard, S. andEdvinson, L. (1990): ‘Cerebral autoregulation’,Cerebrovasc. Brain Metab. Rev.,2, pp. 161–192

    Google Scholar 

  • Reynolds, K. J., Panerai, R. B., Kelsall, A. W. R., Rennie, J. M. andEvans, D. H. (1997): ‘Spectral pattern of neonatal cerebral flow velocity: comparison with spectra from blood pressure and heart rate’,Pediatric Res.,41, pp. 276–284

    Google Scholar 

  • Schlindewin, F. S., Smith, M. J. andEvans, D. H. (1988): ‘Spectral analysis of Doppler signals and computation of the normalized first moment in real time using a digital signal processor’,Med. Biol. Eng. Comput.,26, pp. 228–232

    Article  Google Scholar 

  • Sitzer, M., Knorr, U. andSeitz, R. J. (1994): ‘Cerebral hemodynamics during sensorimotor activation in humans’,J. Appl. Physiol.,77, pp. 2804–2811

    Google Scholar 

  • Steiger, H. J., Aaslid, R., Stoos, R. andSeiler, R. W. (1994): ‘Transcranial Doppler monitoring in head injury: relations between type of injury, flow velocities, vasoreactivity, and outcome’,Neurosurgery,34, pp. 79–86

    Google Scholar 

  • Symon, L., Held, K. andDorsch, N. W. S. (1973): ‘A study of regional autoregulation in the cerebral circulation to increased perfusion pressure in normocapnia and hypercapnia’,Stroke,4, pp. 139–147

    Google Scholar 

  • Tieks, F. P., Lam, A. M., Aaslid, R. andNewell, D. W. (1995a): ‘Comparison of static and dynamic cerebral autoregulation measurements’,Stroke,26, pp. 1014–1019

    Google Scholar 

  • Tiecks, F. P., Lam, A. M., Matta B. F., Strebel, S., Douville, C. andNewell, D. W. (1995b): ‘Effects of the Valsalva maneuver on cerebral circulation in health adults. A transcranial Dopplelr study’,Stroke,26, pp. 1386–1392

    Google Scholar 

  • Zernikow, B., Michel, E., Kohlmann, G., Steck, J., Schmitt, R. M. andJorch, G. (1984): ‘Cerebral autoregulation of preterm neonates— a non-linear control system?’Arch. Dis. Child.,70, pp. F166-F173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Panerai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panerai, R.B., Rennie, J.M., Kelsall, A.W.R. et al. Frequency-domain analysis of cerebral autoregulation from spontaneous fluctuations in arterial blood pressure. Med. Biol. Eng. Comput. 36, 315–322 (1998). https://doi.org/10.1007/BF02522477

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522477

Keywords

Navigation