Skip to main content
Log in

Rapid and Simple Determination of Sarafloxacin in Egg by Time-Resolved Chemiluminescence

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

A new chemiluminescence method for the determination of the fluoroquinolone sarafloxacin is described. The method is based on the measurement of the chemiluminescent (CL) radiation emitted in the reaction of sarafloxacin with Ce (IV) in sulfuric acid medium and in the presence of \( \mathrm{Ru}(\mathrm{bipy})_3^{2+ } \) as sensitizer. Since the method allows the recording of the whole CL intensity-versus-time profile, the use of measurement parameters such as the maximum CL emission is possible, which is proportional to the analyte concentration. The optimum chemical and experimental conditions for the CL emission of the reaction were researched. The calibration graph was lineal in the concentration range from 5.0 to 30.0 mg L−1 of sarafloxacin. The limit of detection, according to Clayton et al. (Anal Chem 59:2506–2514, 1987), was 1.17 mg L−1. After analyzing a series of ten solutions of 10.0 mg L−1 of sarafloxacin, the estimated average concentration was 10.30 mg L−1 with a standard deviation of 0.42 mg L−1 (confidence level, 95 %). The effect on the sarafloxacin CL signal of some common excipients (sucrose, lactose, and starch) used widely in pharmaceutical preparations was also tested, as well as that of others fluoroquinolones (namely, enrofloxacin and ciprofloxacin). Finally, the proposed method was applied to the determination of sarafloxacin in different spiked egg samples by using the standard addition methodology, obtaining excellent recoveries in all cases (close to 100 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CL:

Chemiluminescence/Chemiluminescent

\( \mathrm{Ru}(\mathrm{bipy})_3^{2+ } \) :

Tris(2,2′-bipyridyl) ruthenium (II)

References

  • Aly FA, Al-Tamimi SA, Alwarthan AA (2001) Chemiluminescence determination of some fluoroquinolone derivatives in pharmaceutical formulations and biological fluids using tris(2,2'-bipyridyl)ruthenium(II)-Ce(IV) system. Talanta 53:885

    Article  CAS  Google Scholar 

  • Barron D, Jimenez-Lozano E, Bailac S, Barbosa J (2002) Determination of difloxacin and sarafloxacin in chicken muscle using solid-phase extraction and capillary electrophoresis. J Chromatogr B Anal Technol Biomed Life Sci 767:313

    Article  CAS  Google Scholar 

  • Barron D, Barbosa J, Nemutlu E, Hermo MP (2010) Multiresidue determination of quinolones regulated by the European Union in bovine and porcine plasma Application of chromatographic and capillary electrophoretic methodologies. Biomed Chromatogr 25:555

    Google Scholar 

  • Bauer JF, Howard S, Schmidt A (1990) High-performance liquid-chromatographic determination of several quinolone antibacterials in medicated fish feed. J Chromatogr 514:348

    Article  CAS  Google Scholar 

  • Benito-Pena E, Martins S, Orellana G, Cruz M-BM (2009) Water-compatible molecularly imprinted polymer for the selective recognition of fluoroquinolone antibiotics in biological samples. Anal Bioanal Chem 393:235

    Article  CAS  Google Scholar 

  • Chansiripornchai N, Sasipreeyajan J (2002) Efficacy of Sarafloxacin in broilers after experimental infection with Escherichia coli. Vet Res Commun 26:255

    Article  CAS  Google Scholar 

  • Chen YH, Zhao FL, Zhang YQ, Liu BS (2009) Determination of sarafloxacin by fluoremetry with terbium-sarafloxacin system. Fenxi Shiyanshi 28:24

    CAS  Google Scholar 

  • Choi J, Yee AJ, Thompson D, Samoluk J, Mitchell M, Black WD (1999) Determination of fluoroquinolone residues in animal tissues using Escherichia coli as indicator organism. J AOAC Int 82:1407

    CAS  Google Scholar 

  • Clayton CA, Hines JW, Elkins PD (1987) Detection limits with specified assurance probabilities. Anal Chem 59:2506

    Article  CAS  Google Scholar 

  • Cohen E, Maxwell RJ, Donoghue DJ (1999) Automated multi-residue isolation of fluoroquinolone antimicrobials from fortified and incurred chicken liver using online microdialysis and high-performance liquid chromatography with programmable fluorescence detection Journal of Chromatography. B Biomed Appl 724:137

    Article  CAS  Google Scholar 

  • Commission Regulation (EC) (1999) No 508/1999 of 4 March 1999 amending Annexes I to IV to Council Regulation (EEC) No 2377/90 laying down a Community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin. Off J Eur Communities 42:21

    Google Scholar 

  • Delepine B, Hurtaud-Pessel D, Sanders P (1998) Simultaneous determination of six quinolinones in pig muscle by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Analyst 123:2743

    Article  CAS  Google Scholar 

  • Du XY, Peng T, Li JS (2003) Preparation and binding characteristics of molecularly imprinted polymers for sarafloxacin. Fenxi huaxue 31:720

    CAS  Google Scholar 

  • Fábrega A, Sánchez Céspedes J, Soto S, Vila J (2008) Quinolone resistance in the food chain. Int J Antimicrob Agents 31:307

    Article  Google Scholar 

  • Fu L, Chen JF, Long YQ, Wang XY, Liu BS (2008) Determination of sarafloxacin hydrochloride by spectrophotometry with eosin. Fenxi Shiyanshi 27:95

    CAS  Google Scholar 

  • Gerardi RD, Barnett NW, Jones P (1999) Two chemical approaches for the production of stable solutions of tris(2,2'-bipyridyl)ruthenium(III) for analytical chemiluminescence. Anal Chim Acta 388:1

    Article  CAS  Google Scholar 

  • Hormazabal V, Rogstad A, Steffenak I, Yndestad M (1991) Rapid assay for monitoring residues of enrofloxacin and sarafloxacin in fish tissues by high-performance liquid chromatography. J Liq Chromatogr Relat Technol 14:1605

    Article  Google Scholar 

  • Huet A-C, Charlier C, Tittlemier SA, Singh G, Benrejeb S, Delahaut P (2006) Simultaneous determination of (fluoro)quinolone antibiotics in kidney, marine products, eggs, and muscle by enzyme-linked immunosorbent assay (ELISA). J Agric Food Chem 54:2822

    Article  CAS  Google Scholar 

  • Huet A-C, Charlier C, Singh G, Godefroy SB, Leivo J, Vehniainen M, Nielen MWF, Weigel S, Delahaut P (2008) Development of an optical surface plasmon resonance biosensor assay for (fluoro)quinolones in egg, fish, and poultry meat. Anal Chim Acta 623:195

    Article  CAS  Google Scholar 

  • Idowu OR, Peggins JO (2004) Simple, rapid determination of enrofloxacin and ciprofloxacin in bovine milk and plasma by high-performance liquid chromatography with fluorescence detection. J Pharm Biomed Anal 35:143

    Article  CAS  Google Scholar 

  • IUPAC (1978) Nomenclature, symbols, units and their usage in spectrochemical analysis II. Spectrochim Acta 33:242

    Google Scholar 

  • Jackson LC, Machado LA, Hamilton ML (1998) Principios generales de la terapéutica antimicrobiana. Acta Med 8:13

    Google Scholar 

  • Knight AW, Greenway GM, Chesmore ED (1995) Development of a silicon photodiode, electrogenerated chemiluminescence, flow-through detector. Anal Proc Incl Anal Commun 32:125

    Article  CAS  Google Scholar 

  • Lara FJ, Garcia-Campana AM, Ales-Barrero F, Bosque-Sendra JM (2008) In-line solidphase extraction preconcentration in capillary electrophoresis-tandem mass spectrometry for the multiresidue detection of quinolones in meat by pressurized liquid extraction. Electrophoresis 29:2117

    Article  CAS  Google Scholar 

  • Leivo J, Chappuis C, Lamminmaki U, Lovgren T, Vehniainen M (2011) Engineering of a broad-specificity antibody: detection of eight fluoroquinolone antibiotics simultaneously. Anal Biochem 409:14

    Article  CAS  Google Scholar 

  • Lesher GY, Froelich EJ, Gruett MD, Bailey JH, Brundage RP (1962) 1,8-naphthyridine derivatives A new class of chemotherapeutic agents. J Med Pharm Chem 91:1063

    Article  CAS  Google Scholar 

  • Lian N, Sun CY, Zhao HC (2002) A study on terbium sensitized chemiluminescence of norfloxacin and its applications. Fenxi Kexue Xuebao 18:111

    CAS  Google Scholar 

  • Lian N, Zhao HC, Sun CY, Chen SL, Lu Y, Jin LP (2003) A study on terbium sensitized chemiluminescence of ciprofloxacin and its application. Microchem J 74:223

    Article  CAS  Google Scholar 

  • Liang YD, Li JZ, Zhang ZJ (1997) Flow-injection chemiluminescence determination of ciprofloxacin hydrochloride. Fenxi huaxue 25:1307

    CAS  Google Scholar 

  • Lombardo-Agui M, Gamiz-Gracia L, Garcia-Campana AM, Cruces-Blanco C (2010) Sensitive determination of fluoroquinolone residues in waters by capillary electrophoresis with laser-induced fluorescence detection. Anal Bioanal Chem 396:1551

    Article  Google Scholar 

  • Lombardo-Agui M, Garcia-Campana AM, Gamiz-Gracia L, Cruces-Blanco C (2012) Determination of quinolones of veterinary use in bee products by ultra-high performance liquid chromatography-tandem mass spectrometry using a QuEChERS extraction procedure. Talanta 93:193

    Article  Google Scholar 

  • Long GL, Winefordner JD (1983) Limit of detection A closer look at the IUPAC definition. Anal Chem 55:712A

    Article  CAS  Google Scholar 

  • Malik YS, Chander Y, Gupta SC, Goyal SM (2005) A retrospective study on antimicrobial resistance in Mannheimia (Pasteurella) haemolytica, Escherichia coli, Salmonella species, and Bordetella avium from chickens in Minnesota. J Appl Poult Res 14:506

    CAS  Google Scholar 

  • Mandell LA, Peterson LR, Wise R, Hooper D, Low DE, Schaad UB, Klugman KP, Courvalin P (2002) The battle against emerging antibiotic resistance: should fluoroquinolones be used to treat children? Clin Infect Dis 35:721

    Article  CAS  Google Scholar 

  • Maxwell RJ, Cohen E, Donoghue DJ (1999) Determination of sarafloxacin residues in fortified and incurred eggs using online microdialysis and HPLC/programmable fluorescence detection. J Agric Food Chem 47:1563

    Article  CAS  Google Scholar 

  • Murillo Pulgarín JA, Alañón Molina A, Muñoz De La Peña A, Durán Merás I, Jiménez Girón A (2007) Resolution of ofloxacin-ciprofloxacin and ofloxacin-norfloxacin binary mixtures by flow-injection chemiluminescence in combination with partial least squares multivariate calibration. J Fluoresc 17:481

    Article  Google Scholar 

  • Murillo Pulgarín JA, Alañón Molina A, Rodríguez Muñoz S (2011) Rapid chemiluminescent determination of enrofloxacin in eggs and veterinary drugs. Anal Lett 44:2194

    Article  Google Scholar 

  • Ocaña JA, Barragán FJ, Callejón M, de la Rosa F (2004) Application of lanthanidesensitised chemiluminescence to the determination of levofloxacin, moxifloxacin and trovafloxacin in tablets. Mikrochim Acta 144:207

    Article  Google Scholar 

  • Rao Y, Tong Y, Zhang XR, Luo GA, Baeyens WRG (2000) Flow-injection chemiluminescence determination of fluoroquinolones. Anal Lett 33:1117

    Article  CAS  Google Scholar 

  • Roybal JE, Pfenning AP, Turnipseed SB, Walker CC, Hurlbut JA (1997) Determination of four fluoroquinolones in milk by liquid chromatography. J AOAC Int 80:982

    CAS  Google Scholar 

  • Samanidou VF, Christodoulou EA, Papadoyannis IN (2005) Validation of a novel HPLC sorbent material for the determination of ten quinolones in human and veterinary pharmaceutical formulations. J Sep Sci 28:2444

    Article  CAS  Google Scholar 

  • Sun HW, Li LQ, Chen XY (2006) Flow-injection enhanced chemiluminescence method for determination of ciprofloxacin in pharmaceutical preparations and biological fluids. Anal Bioanal Chem 384:1314

    Article  CAS  Google Scholar 

  • Sun HW, Zhao W, He P (2008) Effective separation and simultaneous determination of four fluoroquinolones in milk by CE with SPE. Chromatographia 68:425

    Article  CAS  Google Scholar 

  • Tamtam F, Mercier F, Eurin J, Chevreuil M, Le BB (2009) Ultra performance liquid chromatography tandem mass spectrometry performance evaluation for analysis of antibiotics in natural waters. Anal Bioanal Chem 393:1709

    Article  CAS  Google Scholar 

  • von Rosenstiel N, Adam D (1994) Quinolone antibacterials: an update of their pharmacology and therapeutic use. Drugs 47:872

    Article  Google Scholar 

  • Wang L, Yang P, Li Y-X, Chen H-Q, Li M-G, Luo F-B (2007) A flow injection chemiluminescence method for the determination of fluoroquinolone derivative using the reaction of luminol and hydrogen peroxide catalyzed by gold nanoparticles. Talanta 72:1066

    Article  CAS  Google Scholar 

  • Yang ZJ, Wang XL, Qin WD, Zhao HC (2008) Capillary electrophoresischemiluminescence determination of norfloxacin and prulifloxacin. Anal Chim Acta 623:231

    Article  CAS  Google Scholar 

  • Zhang ZD, Baeyens WRG, Zhang XR, Van DWG (1996) Chemiluminescence flowinjection analysis of captopril applying a sensitized rhodamine 6G method. J Pharm Biomed Anal 14:939

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelia Alañón Molina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murillo Pulgarín, J.A., Alañón Molina, A., Martínez Ferreras, F. et al. Rapid and Simple Determination of Sarafloxacin in Egg by Time-Resolved Chemiluminescence. Food Anal. Methods 6, 1153–1161 (2013). https://doi.org/10.1007/s12161-012-9522-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-012-9522-3

Keywords

Navigation