Skip to main content

Advertisement

Log in

Lignin Removal and Cellulose Digestibility Improved by Adding Antioxidants and Surfactants to Organosolv Pretreatment of Sugarcane Bagasse

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Annually, tons of sugarcane bagasse are generated in the sugar and alcohol industries. This biomass has great potential in the use of converting cellulose into glucose, an energy currency for various biotechnological processes. However, lignin content is a limiting factor in cellulose accessibility. This study aimed to improve lignin removal by evaluating the additive's effect on biomass pretreatment. The additives were tert-butylhydroquinone, 3-tert-butyl-4-hydroxyanisole, methyl 3,4,5-trihydroxybenzoate; surfactants Tween 20, Tween 80, and dimethyl sulfoxide (DMSO). The antioxidants collaborated with lignin removal; the 3-tert-butyl-4-hydroxyanisole reached 71% of lignin removal. Inherent to the pretreatment, tert-butylhydroquinone showed 23.53% and 89.54% of cellulose and hemicellulose removal, respectively. Dioxane extraction compounds from the pretreated biomass showed an increased amount using additives, suggesting more compounds adsorbed on the material surface. All the antioxidants/surfactants applied to the organosolv pretreatment improved enzymatic hydrolysis, reaching 98.9% cellulose into glucose conversion (Tween 80). The use of chemical compounds during pretreatment beneficed the removal of lignin from biomass and consequently the cellulose hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

TB:

Tert-butylhydroquinone

TH:

3-Tert-butyl-4-hydroxyanisole

MT:

Methyl 3,4,5-trihydroxybenzoate

T2:

Tween 20

T8:

Tween 80

DS:

Dimethyl sulfoxide – DMSO

References

  1. Schmatz AA, Tyhoda L, Brienzo M (2020) Sugarcane biomass conversion influenced by lignin. Biofpr 14. https://doi.org/10.1002/bbb.2070

  2. Shimizu FL, de Azevedo GO, Coelho LF et al (2020) minimum lignin and xylan removal to improve cellulose accessibility. BioEnergy Res 13(313):775–785. https://doi.org/10.1007/S12155-020-10120-Z

    Article  CAS  Google Scholar 

  3. Zhao X, Wen J, Chen H, Liu D (2018) The fate of lignin during atmospheric acetic acid pretreatment of sugarcane bagasse and the impacts on cellulose enzymatic hydrolyzability for bioethanol production. Renew Energy 128:200–209. https://doi.org/10.1016/J.RENENE.2018.05.071

    Article  CAS  Google Scholar 

  4. Melati RB, Shimizu FL, Oliveira G, et al (2019) Key factors affecting the recalcitrance and conversion process of biomass. Bioenergy Res 12. https://doi.org/10.1007/s12155-018-9941-0

  5. Sant’ Anna C, de Souza W, Brienzo M (2014) The influence of the heterogeneity, physicochemical and structural properties on the recalcitrance and conversion of sugarcane bagasse. In: Webb E (ed) Sugarcane: production, consumption and agricultural management systems. Nova Science Publishers, New York, pp 1–361

    Google Scholar 

  6. Phitsuwan P, Sakka K, Ratanakhanokchai K (2013) Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biom Bioenerg 58:390–405. https://doi.org/10.1016/J.BIOMBIOE.2013.08.027

    Article  CAS  Google Scholar 

  7. Schutyser W, Renders T, van den Bosch S, et al (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 852–908. https://doi.org/10.1039/C7CS00566K

  8. Chu Q, Tong W, Chen J et al (2021) Organosolv pretreatment assisted by carbocation scavenger to mitigate surface barrier effect of lignin for improving biomass saccharification and utilization. Biotechnol Biofuels 14:1–13. https://doi.org/10.1186/S13068-021-01988-W/FIGURES/5

    Article  Google Scholar 

  9. Pielhop T, Larrazábal GO, Studer MH et al (2015) Lignin repolymerisation in spruce autohydrolysis pretreatment increases cellulase deactivation. Green Chem 17:3521–3532. https://doi.org/10.1039/C4GC02381A

    Article  CAS  Google Scholar 

  10. Pielhop T, Larrazábal GO, Rudolf Von Rohr P (2016) Autohydrolysis pretreatment of softwood – enhancement by phenolic additives and the effects of other compounds. Green Chem 18:5239–5247. https://doi.org/10.1039/C6GC01447J

    Article  CAS  Google Scholar 

  11. Mesa L, Martínez Y, Barrio E, González E (2017) Desirability function for optimization of Dilute Acid pretreatment of sugarcane straw for ethanol production and preliminary economic analysis based in three fermentation configurations. App Energy 198:299–311. https://doi.org/10.1016/J.APENERGY.2017.03.018

    Article  CAS  Google Scholar 

  12. Mesa L, González E, Cara C et al (2011) The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J 168:1157–1162. https://doi.org/10.1016/J.CEJ.2011.02.003

    Article  CAS  Google Scholar 

  13. Brienzo M, Fikizolo S, Benjamin Y, et al (2017) Influence of pretreatment severity on structural changes, lignin content and enzymatic hydrolysis of sugarcane bagasse samples. Renew Energy 104. https://doi.org/10.1016/j.renene.2016.12.037

  14. Candido JP, Claro EMT, de Paula CBC et al (2020) Detoxification of sugarcane bagasse hydrolysate with different adsorbents to improve the fermentative process. World J Microbiol Biotechnol 36(336):1–12. https://doi.org/10.1007/S11274-020-02820-7

    Article  Google Scholar 

  15. Schmatz AA, Salazar-Bryam AM, Contiero J et al (2021) Pseudo-lignin content decreased with hemicellulose and lignin removal, improving cellulose accessibility, and enzymatic digestibility. Bioenergy Res 14:106–121. https://doi.org/10.1007/s12155-020-10187-8

    Article  CAS  Google Scholar 

  16. Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12. https://doi.org/10.1016/J.BIORTECH.2012.04.037

    Article  CAS  PubMed  Google Scholar 

  17. Hu F, Ragauskas A (2013) Suppression of pseudo-lignin formation under dilute acid pretreatment conditions. RSC Adv 4:4317–4323. https://doi.org/10.1039/C3RA42841A

    Article  Google Scholar 

  18. Santos NC, Figueira-Coelho J, Martins-Silva J, Saldanha C (2003) Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem Pharmacol 65:1035–1041. https://doi.org/10.1016/S0006-2952(03)00002-9

    Article  CAS  PubMed  Google Scholar 

  19. Jain S, Sharma MP (2010) Stability of biodiesel and its blends: a review. Renew Sust Energ Rev 14:667–678. https://doi.org/10.1016/J.RSER.2009.10.011

    Article  CAS  Google Scholar 

  20. Kaur R, Uppal SK (2015) Structural characterization and antioxidant activity of lignin from sugarcane bagasse. Colloid Polym Sci 293:2585–2592. https://doi.org/10.1007/S00396-015-3653-1/FIGURES/5

    Article  CAS  Google Scholar 

  21. Jiamboonsri P, Pithayanukul P, Bavovada R et al (2015) A validated liquid chromatography-tandem mass spectrometry method for the determination of methyl gallate and pentagalloyl glucopyranose: application to pharmacokinetic studies. J Chromatogr B 986–987:12–17. https://doi.org/10.1016/J.JCHROMB.2015.02.006

    Article  Google Scholar 

  22. Siva Prasad S, Jayaprakash SH, Syamasundar C et al (2015) Tween 20-/H2O promoted green synthesis, computational and antibacterial activity of amino acid substituted methylene bisphosphonates. Phosphorus Sulfur Silicon Relat Elem 190(11):2040–2050. https://doi.org/10.1080/10426507.2015.1054928

    Article  CAS  Google Scholar 

  23. Xin D, Yang M, Chen X et al (2017) Improving the hydrolytic action of cellulases by tween 80: offsetting the lost activity of cellobiohydrolase Cel7a. ACS Sustain Chem Eng 5:11339–11345. https://doi.org/10.1021/ACSSUSCHEMENG.7B02361

    Article  CAS  Google Scholar 

  24. Fernandes ÉS, Bueno D, Pagnocca FC, Brienzo M (2020) Minor biomass particle size for an efficient cellulose accessibility and enzymatic hydrolysis. ChemistrySelect 5:7627–7631. https://doi.org/10.1002/SLCT.202001008

    Article  CAS  Google Scholar 

  25. Espirito Santo M, Rezende CA, Bernardinelli OD et al (2018) Structural and compositional changes in sugarcane bagasse subjected to hydrothermal and organosolv pretreatments and their impacts on enzymatic hydrolysis. Ind Crops Prod 113:64–74. https://doi.org/10.1016/J.INDCROP.2018.01.014

    Article  CAS  Google Scholar 

  26. ABNT NBR 16550 (2018) Sugarcane bagasse - chemical characterization. Brazilian National Standards Organization (2018) ABNT

  27. Hu F, Jung S, Ragauskas A (2013) Impact of pseudolignin versus dilute acid-pretreated lignin on enzymatic hydrolysis of cellulose. ACS Sustain Chem Eng 1:62–65. https://doi.org/10.1021/sc300032j

    Article  CAS  Google Scholar 

  28. Roldán IUM, Mitsuhara AT, Munhoz Desajacomo JP et al (2017) Chemical, structural, and ultrastructural analysis of waste from the carrageenan and sugar-bioethanol processes for future bioenergy generation. Biomass Bioenergy 107:233–243. https://doi.org/10.1016/J.BIOMBIOE.2017.10.008

    Article  Google Scholar 

  29. Zhang H, Fan M, Li X et al (2018) Enhancing enzymatic hydrolysis of sugarcane bagasse by ferric chloride catalyzed organosolv pretreatment and Tween 80. Bioresour Technol 258:295–301. https://doi.org/10.1016/J.BIORTECH.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  30. Brienzo M, Tyhoda L, Benjamin Y, Görgens J (2015) Relationship between physicochemical properties and enzymatic hydrolysis of sugarcane bagasse varieties for bioethanol production. N Biotechnol 32:253–262

    Article  CAS  Google Scholar 

  31. Huang X, Korányi TI, Boot MD, Hensen EJM (2015) Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics. Green Chem 17:4941–4950. https://doi.org/10.1039/C5GC01120E

    Article  CAS  Google Scholar 

  32. Schmatz AA (2021) Brienzo M (2021) Butylated hydroxytoluene improves lignin removal by organosolv pretreatment of sugarcane bagasse. Bioenergy Res 1:1–9. https://doi.org/10.1007/S12155-021-10317-W

    Article  Google Scholar 

  33. Mushrif SH, Caratzoulas S, Vlachos DG (2012) Understanding solvent effects in the selective conversion of fructose to 5-hydroxymethyl-furfural: a molecular dynamics investigation. Phys Chem Chem Phys 14:2637–2644. https://doi.org/10.1039/C2CP22694D

    Article  CAS  PubMed  Google Scholar 

  34. Yang J, Chen H, Zhao W, Zhou J (2016) TG–FTIR-MS study of pyrolysis products evolving from peat. J Anal Appl Pyrolysis 117:296–309. https://doi.org/10.1016/J.JAAP.2015.11.002

    Article  CAS  Google Scholar 

  35. Shimizu FL, Monteiro PQ, Ghiraldi PHC, et al (2018) Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Ind Crops Prod 115.https://doi.org/10.1016/j.indcrop.2018.02.024

  36. Qing Q, Yang B, Wyman CE (2010) Impact of surfactants on pretreatment of corn stover. Bioresour Technol 101:5941–5951. https://doi.org/10.1016/J.BIORTECH.2010.03.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian Council for Research and Development – CNPq (process number: 401900/2016-9) and São Paulo Research Foundation (process number 2017/22401-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Brienzo.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmatz, A.A., Masarin, F. & Brienzo, M. Lignin Removal and Cellulose Digestibility Improved by Adding Antioxidants and Surfactants to Organosolv Pretreatment of Sugarcane Bagasse. Bioenerg. Res. 15, 1107–1115 (2022). https://doi.org/10.1007/s12155-021-10367-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10367-0

Keywords

Navigation