Skip to main content

Advertisement

Log in

Butylated Hydroxytoluene Improves Lignin Removal by Organosolv Pretreatment of Sugarcane Bagasse

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Advantages in biomass pretreatment could be reached by improving lignin removal. In this study, the antioxidant butylated hydroxytoluene (BHT) was evaluated for lignin removal from biomass. In pretreatments performed at 121 °C with 50% (v/v) ethanol as solvent, the presence of BHT resulted in 45.28% and 72.45% lignin and hemicellulose removal, against its absence that resulted in 35.09% and 56.31%, respectively. The use of BHT in lignin removal under these conditions represents an improvement in the pretreatment reducing the biomass recalcitrance. FTIR analyses showed that organosolv pretreatment with BHT influenced band intensity of the pseudo-lignin, while in acid medium similarity was observed among the spectra. The enzymatic hydrolysis of pretreated biomass suffered the influence of hemicellulose and lignin removal. Pretreatments at 121 °C resulted in the highest cellulose conversion with 75% ethanol (58.67%), while pretreated biomass at 160 °C with 0.3% BHT resulted in a 59.04% of glucose yield. The use of BHT increased the lignin solubilization from the biomass in the organosolv pretreatment, increasing the effectiveness of the process, collaboration for further use of lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Karp SG, Woiciechowski AL, Soccol VT et al (2013) Pretreatment strategies for delignification of sugarcane bagasse: a review. Brazilian Arch Biol Technol 56:679–689. https://doi.org/10.1590/S1516-89132013000400019

    Article  CAS  Google Scholar 

  2. Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC et al (2019) Acid pretreatment of lignocellulosic biomass for energy vectors production: a review focused on operational conditions and techno-economic assessment for bioethanol production. Renew Sustain Energy Rev 107:587–601. https://doi.org/10.1016/j.rser.2019.02.024

    Article  CAS  Google Scholar 

  3. Schmatz AA, Tyhoda L, Brienzo M (2020) Sugarcane biomass conversion influenced by lignin. Biofuels, Bioprod Bioref 14:469–480. https://doi.org/10.1002/bbb.2070

    Article  CAS  Google Scholar 

  4. Espirito Santo M, Rezende CA, Bernardinelli OD et al (2018) Structural and compositional changes in sugarcane bagasse subjected to hydrothermal and organosolv pretreatments and their impacts on enzymatic hydrolysis. Ind Crops Prod 113:64–74. https://doi.org/10.1016/j.indcrop.2018.01.014

    Article  CAS  Google Scholar 

  5. Zhang H, Wu S (2015) Generation of lignin and enzymatically digestible cellulose from ethanol-based organosolv pretreatment of sugarcane bagasse. Cellulose 22:2409–2418. https://doi.org/10.1007/s10570-015-0678-z

    Article  CAS  Google Scholar 

  6. Hu F, Jung S, Ragauskas A (2013) Impact of pseudolignin versus dilute acid-pretreated lignin on enzymatic hydrolysis of cellulose. ACS Sustain Chem Eng 1:62–65. https://doi.org/10.1021/sc300032j

    Article  CAS  Google Scholar 

  7. Sannigrahi P, Kim DH, Jung S, Ragauskas A (2011) Pseudo-lignin and pretreatment chemistry. Energy Environ Sci 4:1306–1310. https://doi.org/10.1039/c0ee00378f

    Article  CAS  Google Scholar 

  8. Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12. https://doi.org/10.1016/j.biortech.2012.04.037

    Article  CAS  PubMed  Google Scholar 

  9. Carvajal JC, Gómez Á, Cardona CA (2016) Comparison of lignin extraction processes: economic and environmental assessment. Bioresour Technol 214:468–476. https://doi.org/10.1016/j.biortech.2016.04.103

    Article  CAS  PubMed  Google Scholar 

  10. Cao L, Yu IKM, Liu Y et al (2018) Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects. Bioresour Technol 269:465–475. https://doi.org/10.1016/j.biortech.2018.08.065

    Article  CAS  PubMed  Google Scholar 

  11. Ramires EC, Megiatto JD Jr, Gardrat C et al (2010) Valorization of an industrial organosolv-sugarcane bagasse lignin: characterization and use as a matrix in biobased composites reinforced with sisal fibers. Biotechnol Bioeng 107:612–621. https://doi.org/10.1002/bit.22847

    Article  CAS  PubMed  Google Scholar 

  12. Kaur R, Uppal SK, Sharma P (2017) Antioxidant and antibacterial activities of sugarcane bagasse lignin and chemically modified lignins. Sugar Tech 19:675–680. https://doi.org/10.1007/s12355-017-0513-y

    Article  CAS  Google Scholar 

  13. Govender M, Bush T, Spark A et al (2009) An accurate and non-labor intensive method for the determination of syringyl to guaiacyl ratio in lignin. Bioresour Technol 100:5834–5839. https://doi.org/10.1016/j.biortech.2009.06.009

    Article  CAS  PubMed  Google Scholar 

  14. Fernandes ÉS, Bueno D, Pagnocca FC et al (2020) (2020) Minor biomass particle size for an efficient cellulose accessibility and enzymatic hydrolysis. Chem 5:7627–7631. https://doi.org/10.1002/slct.202001008

    Article  CAS  Google Scholar 

  15. Brienzo M, Tyhoda L, Benjamin Y, et al (2015) Relationship between physicochemical properties and enzymatic hydrolysis of sugarcane bagasse varieties for bioethanol production. N Biotechnol 00. https://doi.org/10.1016/j.nbt.2014.12.007

  16. Shimizu FL, Monteiro PQ, Ghiraldi PHC et al (2018) Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Ind Crop Prod 115:62–68. https://doi.org/10.1016/j.indcrop.2018.02.024

    Article  CAS  Google Scholar 

  17. Roldán UIM, Mitsuhara TA, Desajacomo JPM et al (2017) Chemical, structural, and ultrastructural analysis of waste from the carrageenan and sugar-bioethanol processes for future bioenergy generation. Biomass Bioenergy 107:233–243. https://doi.org/10.1016/j.biombioe.2017.10.008

    Article  CAS  Google Scholar 

  18. ABNT NBR 16550:2018 Sugarcane bagasse - chemical characterization. Brazilian National Standards Organization (2018) ABNT

  19. Brienzo M, Fikizolo S, Benjamin Y et al (2017) Influence of pretreatment severity on structural changes, lignin content and enzymatic hydrolysis of sugarcane bagasse samples. Renew Energy 104:271–280. https://doi.org/10.1016/j.renene.2016.12.037

    Article  CAS  Google Scholar 

  20. Sritrakul N, Nitisinprasert S, Keawsompong S (2017) Evaluation of dilute acid pretreatment for bioethanol fermentation from sugarcane bagasse pith. Agric Nat Resour 51:512–519. https://doi.org/10.1016/j.anres.2017.12.006

    Article  Google Scholar 

  21. Agnihotri S, Johnsen IA, Bøe MS et al (2015) Ethanol organosolv pretreatment of softwood (Picea abies) and sugarcane bagasse for biofuel and biorefinery applications. Wood Sci Technol 49:881–896. https://doi.org/10.1007/s00226-015-0738-4

    Article  CAS  Google Scholar 

  22. Mesa L, González E, Cara C et al (2011) The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J 168:1157–1162. https://doi.org/10.1016/j.cej.2011.02.003

    Article  CAS  Google Scholar 

  23. Faustino H, Gil N, Baptista C et al (2010) Antioxidant activity of lignin phenolic compounds extracted from kraft and sulphite black liquors. Molecules 15:9308–9322. https://doi.org/10.3390/molecules15129308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmatz AA, Salazar-Bryam AM, Contiero J et al (2020) Pseudo-lignin content decreased with hemicellulose and lignin removal, improving cellulose accessibility, and enzymatic digestibility. BioEnergy Res. https://doi.org/10.1007/s12155-020-10187-8

    Article  Google Scholar 

  25. de Carvalho DM, Colodette JL (2017) Comparative study of acid hydrolysis of lignin and polysaccharides in biomasses. BioResources 12:6907–6923. https://doi.org/10.15376/biores.12.4.6907-6923

    Article  CAS  Google Scholar 

  26. Shinde SD, Meng X, Kumar R et al (2018) Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem 20:2192–2205. https://doi.org/10.1039/c8gc00353j

    Article  CAS  Google Scholar 

  27. Hu F, Ragauskas A (2014) Suppression of pseudo-lignin formation under dilute acid pretreatment conditions. RSC Adv 4:4317–4323. https://doi.org/10.1039/C3RA42841A

    Article  CAS  Google Scholar 

  28. Singh R, Singh S, Trimukhe KD et al (2005) Lignin–carbohydrate complexes from sugarcane bagasse: preparation, purification, and characterization. Carbohydr Polym 62:57–66. https://doi.org/10.1016/j.carbpol.2005.07.011

    Article  CAS  Google Scholar 

  29. Guilherme AA, Dantas PVF, Santos ES et al (2015) Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Brazilian J Chem Eng 32:23–33. https://doi.org/10.1590/0104-6632.20150321s00003146

    Article  Google Scholar 

  30. Shimizu FL, Azevedo GO, Coelho LF et al (2020) Minimum lignin and xylan removal to improve cellulose accessibility. BioEnergy Res 13:775–785. https://doi.org/10.1007/s12155-020-10120-z

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Brazilian Council for Research and Development – CNPq (process number: 401900/2016–9) and São Paulo Research Foundation (process number 2017/22401–8).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Michel Brienzo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 181 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmatz, A.A., Brienzo, M. Butylated Hydroxytoluene Improves Lignin Removal by Organosolv Pretreatment of Sugarcane Bagasse. Bioenerg. Res. 15, 166–174 (2022). https://doi.org/10.1007/s12155-021-10317-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10317-w

Keywords

Navigation