Skip to main content
Log in

Green approach on pretreatment of rice straw using deep eutectic solvent for lignin recovery and efficient hydrolysis

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The use of green processes to recover valuable products from lignocellulosic biomass has gained attention in recent years. In this work, rice straw biomass was pretreated using a natural deep eutectic solvent (NADES), composed of naturally occurring reagents, namely, choline chloride (ChCl) and L-( +)-tartaric acid (TA). The NADES-ChCl/TA was investigated as a potential solvent for the fractionation of rice straw into cellulose-enriched material (CEM) with simultaneous lignin recovery. During the process development, the variables considered were temperature, time, and DES concentration with the experimental range of 96–140 °C, 100–180 min, and 14–40 v/v%, respectively. The experimental design facilitates the mixing of NADES-ChCl/TA with water, resulting in a lower viscosity of NADES which enables effective contact of NADES with rice straw biomass. The qualitative assessment of lignin removal from rice straw was observed using ATR/FT-IR spectra and X-ray diffraction. The pretreated rice straw during enzymatic hydrolysis showed a 6.5 times higher fermentable sugar yield than the untreated sample. The NADES-ChCl/TA showed excellent recyclability up to 8 cycles. The designed process could be considered a viable alternative to conventional biorefinery processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All the data is available in the manuscript.

References

  1. Velvizhi G, Balakumar K, Shetti NP et al (2022) Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: paving a path towards circular economy. Bioresour Technol 343:126151. https://doi.org/10.1016/j.biortech.2021.126151

    Article  Google Scholar 

  2. Takada M, Chandra R, Wu J, Saddler JN (2020) The influence of lignin on the effectiveness of using a chemithermomechanical pulping based process to pretreat softwood chips and pellets prior to enzymatic hydrolysis. Bioresour Technol 302:122895. https://doi.org/10.1016/j.biortech.2020.122895

    Article  Google Scholar 

  3. Florindo C, Oliveira MM, Branco LC, Marrucho IM (2017) Carbohydrates-based deep eutectic solvents: thermophysical properties and rice straw dissolution. J Mol Liq 247:441–447. https://doi.org/10.1016/j.molliq.2017.09.026

    Article  Google Scholar 

  4. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. https://doi.org/10.1039/c5py00263j

    Article  Google Scholar 

  5. Cheng YS, Mutrakulcharoen P, Chuetor S et al (2020) Recent situation and progress in biorefining process of lignocellulosic biomass: toward green economy. Appl Sci Eng Prog 13:299–311. https://doi.org/10.14416/J.ASEP.2020.08.002

    Article  Google Scholar 

  6. Sriariyanun M, Gundupalli MP, Phakeenuya V et al (2024) Biorefinery approaches for production of cellulosic ethanol fuel using recombinant engineered microorganisms. J Appl Sci Eng 27:1985–2005. https://doi.org/10.6180/jase.202402_27(2).0001

    Article  Google Scholar 

  7. Etale A, Onyianta AJ, Turner SR, Eichhorn SJ (2023) Cellulose: a review of water interactions, applications in composites, and water treatment. Chem Rev 123:2016–2048. https://doi.org/10.1021/acs.chemrev.2c00477

    Article  Google Scholar 

  8. Agbor VB, Cicek N, Sparling R et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  Google Scholar 

  9. Aung EM, Endo T, Fujii S et al (2018) Efficient pretreatment of bagasse at high loading in an ionic liquid. Ind Crops Prod 119:243–248. https://doi.org/10.1016/j.indcrop.2018.04.006

    Article  Google Scholar 

  10. Gundupalli MP, Bano K, Panda TK et al (2022) Understanding the effect of low-concentrated protic ionic liquids (PILs) on coconut (Cocos nucifera) residues. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02572-4

    Article  Google Scholar 

  11. An YX, Zong MH, Wu H, Li N (2015) Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour Technol 192:165–171. https://doi.org/10.1016/j.biortech.2015.05.064

    Article  Google Scholar 

  12. Hou XD, Li N, Zong MH (2013) Significantly enhancing enzymatic hydrolysis of rice straw after pretreatment using renewable ionic liquid-water mixtures. Bioresour Technol 136:469–474. https://doi.org/10.1016/j.biortech.2013.02.118

    Article  Google Scholar 

  13. Zhang M, Tian R, Tang S et al (2023) Multistage treatment of bamboo powder waste biomass: highly efficient and selective isolation of lignin components. Waste Manag 166:35–45. https://doi.org/10.1016/j.wasman.2023.04.040

    Article  Google Scholar 

  14. Wu M, Di J, Gong L et al (2023) Enhanced adipic acid production from sugarcane bagasse by a rapid room temperature pretreatment. Chem Eng J 452:139320. https://doi.org/10.1016/j.cej.2022.139320

    Article  Google Scholar 

  15. Tang Z, Wu C, Tang W et al (2023) A novel cetyltrimethylammonium bromide-based deep eutectic solvent pretreatment of rice husk to efficiently enhance its enzymatic hydrolysis. Bioresour Technol 376:128806. https://doi.org/10.1016/j.biortech.2023.128806

    Article  Google Scholar 

  16. Chen Y, Yang D, Tang W et al (2023) Improved enzymatic saccharification of bulrush via an efficient combination pretreatment. Bioresour Technol 385:129369. https://doi.org/10.1016/j.biortech.2023.129369

    Article  Google Scholar 

  17. Tang Z, Yang D, Tang W et al (2023) Combined sulfuric acid and choline chloride/glycerol pretreatment for efficiently enhancing enzymatic saccharification of reed stalk. Bioresour Technol 387:129554. https://doi.org/10.1016/j.biortech.2023.129554

    Article  Google Scholar 

  18. Hou XD, Feng GJ, Ye M et al (2017) Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. Bioresour Technol 238:139–146. https://doi.org/10.1016/j.biortech.2017.04.027

    Article  Google Scholar 

  19. Xing W, Xu G, Dong J et al (2018) Novel dihydrogen-bonding deep eutectic solvents: pretreatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield. Chem Eng J 333:712–720. https://doi.org/10.1016/j.cej.2017.09.176

    Article  Google Scholar 

  20. Zulkefli S, Abdulmalek E, Abdul Rahman MB (2017) Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renew Energy 107:36–41. https://doi.org/10.1016/j.renene.2017.01.037

    Article  Google Scholar 

  21. Okur M, Eslek Koyuncu DD (2020) Investigation of pretreatment parameters in the delignification of paddy husks with deep eutectic solvents. Biomass Bioenerg 142:105811. https://doi.org/10.1016/j.biombioe.2020.105811

    Article  Google Scholar 

  22. Alvarez-Vasco C, Ma R, Quintero M et al (2016) Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem 18:5133–5141. https://doi.org/10.1039/c6gc01007e

    Article  Google Scholar 

  23. Chen Z, Ragauskas A, Wan C (2020) Lignin extraction and upgrading using deep eutectic solvents. Ind Crops Prod 147:112241. https://doi.org/10.1016/j.indcrop.2020.112241

    Article  Google Scholar 

  24. Dai Y, van Spronsen J, Witkamp GJ et al (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68. https://doi.org/10.1016/j.aca.2012.12.019

    Article  Google Scholar 

  25. Kumar AK, Parikh BS, Pravakar M (2016) Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut Res 23:9265–9275. https://doi.org/10.1007/s11356-015-4780-4

    Article  Google Scholar 

  26. Xu H, Peng J, Kong Y et al (2020) Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: a review. Bioresour Technol 310:123416. https://doi.org/10.1016/j.biortech.2020.123416

    Article  Google Scholar 

  27. Scelsi E, Angelini A, Pastore C (2021) Deep eutectic solvents for the valorisation of lignocellulosic biomasses towards fine chemicals. Biomass 1:29–59. https://doi.org/10.3390/biomass1010003

    Article  Google Scholar 

  28. Jose D, Tawai A, Divakaran D et al (2023) Integration of deep eutectic solvent in biorefining process of lignocellulosic biomass valorization. Bioresour Technol Reports 21:101365. https://doi.org/10.1016/j.biteb.2023.101365

    Article  Google Scholar 

  29. Li P, Yang C, Jiang Z et al (2023) Lignocellulose pretreatment by deep eutectic solvents and related technologies: a review. J Bioresour Bioprod 8:33–44. https://doi.org/10.1016/j.jobab.2022.11.004

    Article  Google Scholar 

  30. Xu H, Kong Y, Peng J et al (2021) Mechanism of deep eutectic solvent delignification: insights from molecular dynamics simulations. ACS Sustain Chem Eng 9:7101–7111. https://doi.org/10.1021/acssuschemeng.1c01260

    Article  Google Scholar 

  31. Panakkal EJ, Cheenkachorn K, Chuetor S, et al (2022) Optimization of deep eutectic solvent pretreatment for bioethanol production from Napier grass. Sustain Energy Technol Assessments 54:102856. https://doi.org/10.1016/j.seta.2022.102856

  32. Comuzzo P, Battistutta F (2018) Acidification and pH control in red wines. In: Red wine technology, Academic Press. Elsevier Inc, pp 17–34

  33. Tang Z, Wu C, Tang W et al (2023) Enhancing enzymatic saccharification of sunflower straw through optimal tartaric acid hydrothermal pretreatment. Bioresour Technol 385:129279. https://doi.org/10.1016/j.biortech.2023.129279

    Article  Google Scholar 

  34. Gabriele F, Chiarini M, Germani R et al (2019) Effect of water addition on choline chloride/glycol deep eutectic solvents: characterization of their structural and physicochemical properties. J Mol Liq 291:111301. https://doi.org/10.1016/j.molliq.2019.111301

    Article  Google Scholar 

  35. Sunar SL, Oruganti RK, Bhattacharyya D et al (2024) Pretreatment of sugarcane bagasse using ionic liquid for enhanced enzymatic saccharification and lignin recovery: process optimization by response surface methodology. Cellulose. https://doi.org/10.1007/s10570-024-05768-1

    Article  Google Scholar 

  36. Sluiter A, Hames B, Ruiz R et al (2008) Determination of structural carbohydrates and lignin in biomass. Lab Anal Proced 1617:1–16

  37. Maibam PD, Goyal A (2022) Approach to an efficient pretreatment method for rice straw by deep eutectic solvent for high saccharification efficiency. Bioresour Technol 351:127057. https://doi.org/10.1016/j.biortech.2022.127057

    Article  Google Scholar 

  38. Gundupalli MP, Cheenkachorn K, Chuetor S et al (2023) Assessment of pure, mixed and diluted deep eutectic solvents on Napier grass (Cenchrus purpureus): compositional and characterization studies of cellulose, hemicellulose and lignin. Carbohydr Polym 306:120599. https://doi.org/10.1016/j.carbpol.2023.120599

    Article  Google Scholar 

  39. Kruer-Zerhusen N, Cantero-Tubilla B, Wilson DB (2018) Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR). Cellulose 25:37–48. https://doi.org/10.1007/s10570-017-1542-0

    Article  Google Scholar 

  40. Vaid S, Sharma S, Dutt HC et al (2021) One pot consolidated bioprocess for conversion of Saccharum spontaneum biomass to ethanol-biofuel. Energy Convers Manag 250:114880. https://doi.org/10.1016/j.enconman.2021.114880

    Article  Google Scholar 

  41. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  Google Scholar 

  42. Sawhney D, Vaid S, Bangotra R et al (2023) Proficient bioconversion of rice straw biomass to bioethanol using a novel combinatorial pretreatment approach based on deep eutectic solvent, microwave irradiation and laccase. Bioresour Technol 375:128791. https://doi.org/10.1016/j.biortech.2023.128791

    Article  Google Scholar 

  43. Sorn V, Chang KL, Phitsuwan P et al (2019) Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. Bioresour Technol 293:121929. https://doi.org/10.1016/j.biortech.2019.121929

    Article  Google Scholar 

  44. Singh A, Bishnoi NR (2012) Optimization of enzymatic hydrolysis of pretreated rice straw and ethanol production. Appl Microbiol Biotechnol 93:1785–1793. https://doi.org/10.1007/s00253-012-3870-1

    Article  Google Scholar 

  45. Kumar V, Patel SKS, Gupta RK, et al (2019) Enhanced saccharification and fermentation of rice straw by reducing the concentration of phenolic compounds using an immobilized enzyme cocktail. Biotechnol J 14:1800468. https://doi.org/10.1002/biot.201800468

  46. Gummert M, Van Hung N, Chivenge P, Douthwaite B (2019) Sustainable rice straw management. Sustain Rice Straw Manag 1–192. https://doi.org/10.1007/978-3-030-32373-8

  47. Vieira L, Schennach R, Gollas B (2015) In situ PM-IRRAS of a glassy carbon electrode/deep eutectic solvent interface. Phys Chem Chem Phys 17:12870–12880. https://doi.org/10.1039/c5cp00070j

    Article  Google Scholar 

  48. Liang X, Fu Y, Chang J (2019) Effective separation, recovery and recycling of deep eutectic solvent after biomass fractionation with membrane-based methodology. Sep Purif Technol 210:409–416. https://doi.org/10.1016/j.seppur.2018.08.021

    Article  Google Scholar 

  49. Othman ZS, Hassan NH, Zubairi SI (2015) Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield. AIP Conf Proc 1678:1–9. https://doi.org/10.1063/1.4931283

    Article  Google Scholar 

  50. Khan N, Vijayan N, Shandilya K et al (2020) Single crystal growth of l-tartaric acid and its characterization for optical applications. J Mater Sci Mater Electron 31:4494–4502. https://doi.org/10.1007/s10854-020-02998-4

    Article  Google Scholar 

  51. Koutsoukos S, Tsiaka T, Tzani A et al (2019) Choline chloride and tartaric acid, a natural deep eutectic solvent for the efficient extraction of phenolic and carotenoid compounds. J Clean Prod 241:118384. https://doi.org/10.1016/j.jclepro.2019.118384

    Article  Google Scholar 

  52. Triki A, Dittmer J, Ben HM et al (2016) Spectroscopy analyses of hybrid unsaturated polyester composite reinforced by Alfa, wool, and thermo-binder fibres. Polym Sci - Ser A 58:255–264. https://doi.org/10.1134/S0965545X16020188

    Article  Google Scholar 

  53. Zhu S, Li H, Zhu W et al (2016) Vibrational analysis and formation mechanism of typical deep eutectic solvents: an experimental and theoretical study. J Mol Graph Model 68:158–175. https://doi.org/10.1016/j.jmgm.2016.05.003

    Article  Google Scholar 

  54. Sidik DAB, Ngadi N, Amin NAS (2013) Optimization of lignin production from empty fruit bunch via liquefaction with ionic liquid. Bioresour Technol 135:690–696. https://doi.org/10.1016/j.biortech.2012.09.041

    Article  Google Scholar 

  55. Pan M, Zhao G, Ding C et al (2017) Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea. Carbohydr Polym 176:307–314. https://doi.org/10.1016/j.carbpol.2017.08.088

    Article  Google Scholar 

  56. Raj T, Gaur R, Dixit P et al (2016) Ionic liquid pretreatment of biomass for sugars production: driving factors with a plausible mechanism for higher enzymatic digestibility. Carbohydr Polym 149:369–381. https://doi.org/10.1016/j.carbpol.2016.04.129

    Article  Google Scholar 

  57. Chen WH, Ye SC, Sheen HK (2012) Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl Energy 93:237–244. https://doi.org/10.1016/j.apenergy.2011.12.014

    Article  Google Scholar 

  58. Tsegaye B, Balomajumder C, Roy P (2020) Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production. Renew Energy 148:923–934. https://doi.org/10.1016/j.renene.2019.10.176

    Article  Google Scholar 

  59. Weerachanchai P, Leong SSJ, Chang MW et al (2012) Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresour Technol 111:453–459. https://doi.org/10.1016/j.biortech.2012.02.023

    Article  Google Scholar 

  60. Li W, Sun N, Stoner B et al (2011) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13:2038–2047. https://doi.org/10.1039/c1gc15522a

    Article  Google Scholar 

  61. Poy H, Lladosa E, Gabaldón C, Loras S (2021) Optimization of rice straw pretreatment with 1-ethyl-3-methylimidazolium acetate by the response surface method. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-02111-7

    Article  Google Scholar 

  62. Fendt S, Padmanabhan S, Blanch HW, Prausnitz JM (2011) Viscosities of acetate or chloride-based ionic liquids and some of their mixtures with water or other common solvents. J Chem Eng Data 56:31–34. https://doi.org/10.1021/je1007235

    Article  Google Scholar 

  63. Saha K, Dasgupta J, Chakraborty S et al (2017) Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose 24:3191–3207. https://doi.org/10.1007/s10570-017-1330-x

    Article  Google Scholar 

  64. Serna-Loaiza S, Dias M, Daza-Serna L et al (2022) Integral analysis of liquid-hot-water pretreatment of wheat straw: evaluation of the production of sugars, degradation products, and Lignin. Sustain 4:362. https://doi.org/10.3390/su14010362

  65. Khamis NA, Shamsudin S, Abd Rahman NS, Kasim KF (2019) Effects of autohydrolysis on rice biomass for reducing sugars production. Mater Today Proc 16:2078–2087. https://doi.org/10.1016/j.matpr.2019.06.095

    Article  Google Scholar 

  66. Agrawal R, Verma A, Singhania RR et al (2021) Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. Bioresour Technol 332:125042. https://doi.org/10.1016/j.biortech.2021.125042

    Article  Google Scholar 

  67. Guadix-Montero S, Sankar M (2018) Review on catalytic cleavage of C-C inter-unit linkages in lignin model compounds: towards lignin depolymerisation. Top Catal 61:183–198. https://doi.org/10.1007/s11244-018-0909-2

    Article  Google Scholar 

  68. Zhang C, Shen X, Jin Y et al (2023) Catalytic strategies and mechanism analysis orbiting the center of critical intermediates in lignin depolymerization. Chem Rev 123:4510–4601. https://doi.org/10.1021/acs.chemrev.2c00664

    Article  Google Scholar 

  69. Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. Chemsuschem 3:1227–1235. https://doi.org/10.1002/cssc.201000157

    Article  Google Scholar 

  70. Qiu Y, Zhong D, Zeng K et al (2023) Evolution of lignin pyrolysis heavy components through the study of representative lignin monomers. Fuel Process Technol 250:107910. https://doi.org/10.1016/j.fuproc.2023.107910

    Article  Google Scholar 

  71. Xu F, Sun J, Wehrs M et al (2018) Biocompatible choline-based deep eutectic solvents enable one-pot production of cellulosic ethanol. ACS Sustain Chem Eng 6:8914–8919. https://doi.org/10.1021/acssuschemeng.8b01271

    Article  Google Scholar 

  72. Guo Z, Zhang Q, You T et al (2019) Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization. Green Chem 21:3099–3108. https://doi.org/10.1039/c9gc00704k

    Article  Google Scholar 

  73. Chen Y, Ma C, Tang W, He Y (2023) Bioresource technology comprehensive understanding of enzymatic saccharification of betaine : lactic acid-pretreated sugarcane bagasse. Bioresour Technol 386:129485. https://doi.org/10.1016/j.biortech.2023.129485

    Article  Google Scholar 

  74. Shweta K, Jha H (2015) Rice husk extracted lignin-TEOS biocomposites: effects of acetylation and silane surface treatments for application in nickel removal. Biotechnol Reports 7:95–106. https://doi.org/10.1016/j.btre.2015.05.003

    Article  Google Scholar 

  75. Shen D, Liu G, Zhao J et al (2015) Thermo-chemical conversion of lignin to aromatic compounds: effect of lignin source and reaction temperature. J Anal Appl Pyrolysis 112:56–65. https://doi.org/10.1016/j.jaap.2015.02.022

    Article  Google Scholar 

  76. Ghaffar SH, Fan M (2014) Lignin in straw and its applications as an adhesive. Int J Adhes Adhes 48:92–101. https://doi.org/10.1016/j.ijadhadh.2013.09.001

    Article  Google Scholar 

  77. Akhramez S, Fatimi A, Okoro OV et al (2022) The circular economy paradigm: modification of bagasse-derived lignin as a precursor to sustainable hydrogel production. Sustain 14:8791. https://doi.org/10.3390/su14148791

  78. Mahmood N, Yuan Z, Schmidt J, Xu C (2013) Production of polyols via direct hydrolysis of kraft lignin: effect of process parameters. Bioresour Technol 139:13–20. https://doi.org/10.1016/j.biortech.2013.03.199

    Article  Google Scholar 

  79. Xue BL, Wen JL, Sun RC (2015) Producing lignin-based polyols through microwave-assisted liquefaction for rigid polyurethane foam production. Materials (Basel) 8:586–599. https://doi.org/10.3390/ma8020586

    Article  Google Scholar 

  80. Rashid T, Kait CF, Regupathi I, Murugesan T (2016) Dissolution of kraft lignin using protic ionic liquids and characterization. Ind Crops Prod 84:284–293. https://doi.org/10.1016/j.indcrop.2016.02.017

    Article  Google Scholar 

  81. Oruganti RK, Sunar SL, Panda TK et al (2023) Bioresource technology reports kraft lignin recovery from de-oiled Jatropha curcas seed by potassium hydroxide pretreatment and optimization using response surface methodology. Bioresour Technol Reports 23:101572. https://doi.org/10.1016/j.biteb.2023.101572

    Article  Google Scholar 

  82. Kumari D, Singh R (2022) Rice straw structure changes following green pretreatment with petha wastewater for economically viable bioethanol production. Sci Rep 12:1–10. https://doi.org/10.1038/s41598-022-14627-7

    Article  Google Scholar 

  83. Boonsombuti A, Trisinsub O, Luengnaruemitchai A (2020) Comparative study of three chemical pretreatments and their effects on the structural changes of rice straw and butanol production. Waste Biomass Valorization 11:2771–2781. https://doi.org/10.1007/s12649-019-00622-z

    Article  Google Scholar 

  84. Hartati I, Sulistyo H, Sediawan WB et al (2021) Microwave-assisted urea-based-hydrotropic pretreatment of rice straw: experimental data and mechanistic kinetic models. ACS Omega 6:13225–13239. https://doi.org/10.1021/acsomega.1c01084

    Article  Google Scholar 

  85. Atykyan N, Revin V, Shutova V (2020) Raman and FT-IR spectroscopy investigation the cellulose structural differences from bacteria Gluconacetobacter sucrofermentans during the different regimes of cultivation on a molasses media. AMB Express 10:84. https://doi.org/10.1186/s13568-020-01020-8

  86. Ayeni AO, Daramola MO (2017) Lignocellulosic biomass waste beneficiation: evaluation of oxidative and non-oxidative pretreatment methodologies of South African corn cob. J Environ Chem Eng 5:1771–1779. https://doi.org/10.1016/j.jece.2017.03.019

    Article  Google Scholar 

  87. Liu Y, Zheng X, Tao S et al (2021) Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation. Renew Energy 177:259–267. https://doi.org/10.1016/j.renene.2021.05.131

    Article  Google Scholar 

  88. Freitas PAV, González-Martínez C, Chiralt A (2023) Influence of the cellulose purification process on the properties of aerogels obtained from rice straw. Carbohydr Polym 312:120805. https://doi.org/10.1016/j.carbpol.2023.120805

  89. Wang ZK, Li H, Lin XC et al (2020) Novel recyclable deep eutectic solvent boost biomass pretreatment for enzymatic hydrolysis. Bioresour Technol 307:123237. https://doi.org/10.1016/j.biortech.2020.123237

    Article  Google Scholar 

  90. Shen XJ, Wen JL, Mei QQ et al (2019) Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem 21:275–283. https://doi.org/10.1039/c8gc03064b

    Article  Google Scholar 

  91. Kim KH, Dutta T, Sun J et al (2018) Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chem 20:809–815. https://doi.org/10.1039/c7gc03029k

    Article  Google Scholar 

  92. Wang W, Zhang C, Tong S et al (2018) Enhanced enzymatic hydrolysis and structural features of corn stover by NaOH and ozone combined pretreatment. Mol 23:1300. https://doi.org/10.3390/molecules23061300

  93. Chen Z, Wang Y, Cheng H, Zhou H (2022) Hemicellulose degradation: an overlooked issue in acidic deep eutectic solvents pretreatment of lignocellulosic biomass. Ind Crops Prod 187:115335. https://doi.org/10.1016/j.indcrop.2022.115335

    Article  Google Scholar 

Download references

Acknowledgements

S.L.S. thanks CSIR, India, for their Ph.D. fellowship (09/1001(0090)/2021-EMR-I). This work was supported by the Ministry of Education (India) and the Department of Science and Technology (India) under the FIST program.

Funding

 Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Shiva Lall Sunar: conceptualization, methodology, data curation, formal analysis, software, writing—original draft. Gayathri Vanniappan: formal analysis. Debraj Bhattacharyya: conceptualization, supervision, project administration, resources, writing—review and editing. Tarun K. Panda: conceptualization, supervision, project administration, resources, writing—review and editing.

Corresponding authors

Correspondence to Debraj Bhattacharyya or Tarun K. Panda.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13399_2024_5634_MOESM1_ESM.docx

Supplementary file1 Supplementary Information: Tables showing the 20 experimental runs, ANOVA details for NADES-ChCl/TA pretreatment study, figure—ATR-FTIR Characterization of (a) raw NADES-ChCl/TA and (b) recycled NADES-ChCl/TA, 2D HSQC NMR spectra of NADES-ChCl/TA isolated lignin and the side-chain (50.00–90.00/2.40–5.70) regions in the 2D HSQC NMR spectra of isolated lignin. (DOCX 258 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunar, S.L., Bhattacharyya, D., Vanniappan, G. et al. Green approach on pretreatment of rice straw using deep eutectic solvent for lignin recovery and efficient hydrolysis. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05634-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05634-x

Keywords

Navigation