Skip to main content
Log in

Identification and Characterization of a Glycoside Hydrolase Family 9 Member from the Digestive Gland of the Snail Achatina fulica

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Biomass-degrading enzymes can aid the development of new technologies to increase the production efficiency of green fuels like ethanol. This study reports the identification and characterization of a novel glycoside hydrolase family 9 (GH9) member from the digestive gland of the snail Achatina fulica, an endo-β-1,4-glucanase named AfEG66. The enzyme has a high level of identity with other mollusk endoglucanases and harbors a family 2 carbohydrate-binding module (CBM2) linked to a GH9 domain. Recombinant AfEG66 was expressed in Escherichia coli and purified by immobilized metal ion affinity chromatography followed by ion exchange chromatography. The enzyme was active against barley β-glucan, lichenan, and showed a specific activity of 41.56 ± 1.21 IU/mg towards carboxymethyl cellulose. AfEG66 showed higher activities at pH 6.0–6.5 and 45 °C, being stable at temperatures equal or below 37 °C. The enzyme activity on cello-oligosaccharides with different glucose units was evaluated by thin-layer chromatography and showed the hydrolysis of substrates containing at least three glucose residues. A structural model was obtained to perform docking assays that clarified the hydrolytic properties of this enzyme. The results presented here show that A. fulica has an endogenous cellulase gene that encodes a GH9 endoglucanase associated to a putative CBM2 with β-1,4 glycoside hydrolase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The accession codes are: AfEG66 cloned cDNA: KY373245. Accession codes used for phylogenetic and sequence analysis: WP_026418585.1, ABD24276.1, XP_016907626.1, XP_005111869.2, WP_054493315.1, AMH40360.1, WP_026587001.1, BAU45388.1, XP_013069170.1, WP_027630841.1, ADB12483.1, AGS32241.1, BAF38757.1, XP_011423159.1, BAM14716.1, AFQ98380.1, XP_009049941.1, CAD54730.1, AMH40372.1, KOX76353.1, BAH22180.1, BAH85844.1, XP_012526654.1, BAA33708.1, ADB82658.1, AAF80585.1, ANR02619.1, BAA34050.1, WP_003517595.1, WP_052391031.1, AGP76433.1, WP_011292599.1 and XP_013419079.1.

Code Availability

Not applicable for that section.

References

  1. Valdivia M, Galan JL, Laffarga J, Ramos JL (2016) Biofuels 2020: biorefineries based on lignocellulosic materials. Microb Biotechnol 9(5):585–594. https://doi.org/10.1111/1751-7915.12387

    Article  PubMed  PubMed Central  Google Scholar 

  2. Harris PV, Xu F, Kreel NE, Kang C, Fukuyama S (2014) New enzyme insights drive advances in commercial ethanol production. Curr Opin Chem Biol 19:162–170. https://doi.org/10.1016/j.cbpa.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  3. Ni J, Tokuda G (2013) Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31(6):838–850. https://doi.org/10.1016/j.biotechadv.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  4. Sharma A, Tewari R, Rana SS, Soni R, Soni SK (2016) Cellulases: classification, methods of determination and industrial applications. Appl Biochem Biotechnol 179(8):1346–1380. https://doi.org/10.1007/s12010-016-2070-3

    Article  CAS  PubMed  Google Scholar 

  5. Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632. https://doi.org/10.1146/annurev-ento-112408-085319

    Article  CAS  PubMed  Google Scholar 

  6. Lombard V, GolacondaRamulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(Database issue):D490-495. https://doi.org/10.1093/nar/gkt1178

    Article  CAS  PubMed  Google Scholar 

  7. Wilson D, Urbanowicz B (2021) Glycoside hydrolase family 9. https://www.cazypedia.org/index.php/Glycoside_Hydrolase_Family_9. Accessed 15 Apr 2021

  8. Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394(6691):330–331. https://doi.org/10.1038/28527

    Article  CAS  PubMed  Google Scholar 

  9. Davison A, Blaxter M (2005) Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol Biol Evol 22(5):1273–1284. https://doi.org/10.1093/molbev/msi107

    Article  CAS  PubMed  Google Scholar 

  10. Xu F, Ding H (2007) A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding) effects. Appl Catal A Gen 317(1):70–81. https://doi.org/10.1016/j.apcata.2006.10.014

    Article  CAS  Google Scholar 

  11. Nandy G, Chakraborti M, Shee A, Aditya G, Acharya K (2021) Gut microbiota from lower groups of animals: an upcoming source for cellulolytic enzymes with industrial potentials. Biointerface Res Appl Chem 11(5):13614–13637. https://doi.org/10.33263/briac115.1361413637

    Article  CAS  Google Scholar 

  12. Watanabe H, Tokuda G (2001) Animal cellulases. Cell Mol Life Sci 58(9):1167–1178. https://doi.org/10.1007/PL00000931

    Article  CAS  PubMed  Google Scholar 

  13. Sade YB, Moraes DT, Beltrão PJ, Vicentim MP (2018) Cellulases from invertebrate animals. In: Brienzo M (ed) Bioethanol and beyond: advances in production process and future directions, 1st edn. Nova Science Publishers, New York, pp 261–284

    Google Scholar 

  14. Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20(3):295–299. https://doi.org/10.1016/j.copbio.2009.05.007

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Song K, Teng H, Zhang B, Li W, Xue H, Yang X (2015) Endogenous cellulolytic enzyme systems in the longhorn beetle Mesosa myops (Insecta: Coleoptera) studied by transcriptomic analysis. Acta Biochim Biophys Sin (Shanghai) 47(9):741–748. https://doi.org/10.1093/abbs/gmv070

    Article  CAS  Google Scholar 

  16. Zhang D, Lax AR, Henrissat B, Coutinho P, Katiya N, Nierman WC, Fedorova N (2012) Carbohydrate-active enzymes revealed in Coptotermes formosanus (Isoptera: Rhinotermitidae) transcriptome. Insect Mol Biol 21(2):235–245. https://doi.org/10.1111/j.1365-2583.2011.01130.x

    Article  CAS  PubMed  Google Scholar 

  17. Dedeine F, Weinert LA, Bigot D, Josse T, Ballenghien M, Cahais V, Galtier N, Gayral P (2015) Comparative analysis of transcriptomes from secondary reproductives of three Reticulitermes termite species. PLoS One 10(12):e0145596. https://doi.org/10.1371/journal.pone.0145596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanimura A, Liu W, Yamada K, Kishida T, Toyohara H (2013) Animal cellulases with a focus on aquatic invertebrates. Fish Sci 79(1):1–13. https://doi.org/10.1007/s12562-012-0559-4

    Article  CAS  Google Scholar 

  19. Sakamoto K, Toyohara H (2009) A comparative study of cellulase and hemicellulase activities of brackish water clam Corbicula japonica with those of other marine Veneroida bivalves. J Exp Biol 212(17):2812–2818. https://doi.org/10.1242/jeb.031567

    Article  CAS  PubMed  Google Scholar 

  20. Yin Q, Teng Y, Li Y, Ding M, Zhao F (2011) Expression and characterization of full-length Ampullaria crossean endoglucanase EG65s and their two functional modules. Biosci Biotechnol Biochem 75(2):240–246. https://doi.org/10.1271/bbb.100529

    Article  CAS  PubMed  Google Scholar 

  21. Escobar-Correas S, Mendoza-Porras O, Dellagnola FA, Colgrave ML, Vega IA (2019) Integrative proteomic analysis of digestive tract glycosidases from the invasive Golden Apple snail Pomacea canaliculata. J Proteome Res 18(9):3342–3352. https://doi.org/10.1021/acs.jproteome.9b00282

    Article  CAS  PubMed  Google Scholar 

  22. Pawar KD, Dar MA, Rajput BP, Kulkarni GJ (2015) Enrichment and identification of cellulolytic bacteria from the gastrointestinal tract of Giant African snail Achatina fulica. Appl Biochem Biotechnol 175(4):1971–1980. https://doi.org/10.1007/s12010-014-1379-z

    Article  CAS  PubMed  Google Scholar 

  23. Teng Y, Yin Q, ding M, Zhao F, (2010) Purification and characterization of a novel endo-beta-1,4-glucanases, AfEG22, from the giant snail, Achatina fulica frussac. Acta Biochim Biophys Sin (Shanghai) 42(10):729–734. https://doi.org/10.1093/abbs/gmq083

    Article  CAS  Google Scholar 

  24. Cardoso AM, Cavalcante JJ, Cantao ME, Thompson CE, Flatschart RB, Glogauer A, Scapin SM, Sade YB, Beltrao PJ, Gerber AL, Martins OB, Garcia ES, de Souza W, Vasconcelos AT (2012) Metagenomic analysis of the microbiota from the crop of an invasive snail reveals a rich reservoir of novel genes. PLoS One 7(11):e48505. https://doi.org/10.1371/journal.pone.0048505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scapin SMN, Souza FHM, Zanphorlin LM, de Almeida TS, Sade YB, Cardoso AM, Pinheiro GL, Murakami MT (2017) Structure and function of a novel GH8 endoglucanase from the bacterial cellulose synthase complex of Raoultella ornithinolytica. PLoS One 12(4):e0176550. https://doi.org/10.1371/journal.pone.0176550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pinheiro GL, Correa RF, Cunha RS, Cardoso AM, Chaia C, Clementino MM, Garcia ES, de Souza W, Frases S (2015) Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica. Front Microbiol 6:860. https://doi.org/10.3389/fmicb.2015.00860

    Article  PubMed  PubMed Central  Google Scholar 

  27. Maeda I, Shimohigashi Y, Kihara H, Ohno M (1996) Purification and characterization of a cellulase from the giant snail Achatina fulica. Biosci Biotechnol Biochem 60(1):122–124. https://doi.org/10.1271/bbb.60.122

    Article  CAS  PubMed  Google Scholar 

  28. Green MR, Sambrook J (2012) Molecular cloning : a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  29. Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9(9):868–877. https://doi.org/10.1101/gr.9.9.868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stockinger H, Altenhoff AM, Arnold K, Bairoch A, Bastian F, Bergmann S, Bougueleret L, Bucher P, Delorenzi M, Lane L, Le Mercier P, Lisacek F, Michielin O, Palagi PM, Rougemont J, Schwede T, von Mering C, van Nimwegen E, Walther D, Xenarios I, Zavolan M, Zdobnov EM, Zoete V, Appel RD (2014) Fifteen years SIB Swiss Institute of Bioinformatics: life science databases, tools and support. Nucleic Acids Res 42(Web Server issue):W436-441. https://doi.org/10.1093/nar/gku380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. AlmagroArmenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37(4):420–423. https://doi.org/10.1038/s41587-019-0036-z

    Article  CAS  Google Scholar 

  33. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40(Web Server issue):W445-451. https://doi.org/10.1093/nar/gks479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30(5):1229–1235. https://doi.org/10.1093/molbev/mst012

    Article  CAS  PubMed  Google Scholar 

  35. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. https://doi.org/10.1101/gr.849004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  37. Lucena SA, Moraes CS, Costa SG, de Souza W, Azambuja P, Garcia ES, Genta FA (2013) Miniaturization of hydrolase assays in thermocyclers. Anal Biochem 434(1):39–43. https://doi.org/10.1016/j.ab.2012.10.032

    Article  CAS  PubMed  Google Scholar 

  38. Zhang D, Lax AR, Raina AK, Bland JM (2009) Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from Coptotermes formosanus and expressed in E. coli. Insect Biochem Mol Biol 39(8):516–522. https://doi.org/10.1016/j.ibmb.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  39. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291. https://doi.org/10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  40. Shelomi M, Heckel DG, Pauchet Y (2016) Ancestral gene duplication enabled the evolution of multifunctional cellulases in stick insects (Phasmatodea). Insect Biochem Mol Biol 71:1–11. https://doi.org/10.1016/j.ibmb.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  41. Gilbert H, Ficko-Blean E (2021) Carbohydrate-binding module family 2. https://www.cazypedia.org/index.php/Carbohydrate_Binding_Module_Family_2. Accessed 15 Apr 2021

  42. Ni J, Takehara M, Watanabe H (2010) Identification of activity related amino acid mutations of a GH9 termite cellulase. Bioresour Technol 101(16):6438–6443. https://doi.org/10.1016/j.biortech.2010.03.045

    Article  CAS  PubMed  Google Scholar 

  43. Sakon J, Irwin D, Wilson DB, Karplus PA (1997) Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol 4(10):810–818. https://doi.org/10.1038/nsb1097-810

    Article  CAS  PubMed  Google Scholar 

  44. Arimori T, Ito A, Nakazawa M, Ueda M, Tamada T (2013) Crystal structure of endo-1,4-beta-glucanase from Eisenia fetida. J Synchrotron Radiat 20(Pt 6):884–889. https://doi.org/10.1107/S0909049513021110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Honda Y, Arai S, Suzuki K, Kitaoka M, Fushinobu S (2016) The crystal structure of an inverting glycoside hydrolase family 9 exo-beta-D-glucosaminidase and the design of glycosynthase. Biochem J 473(4):463–472. https://doi.org/10.1042/BJ20150966

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Irwin DC, Wilson DB (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73(10):3165–3172. https://doi.org/10.1128/AEM.02960-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mudasir Ahmad D, Chintalchere JM, Radhakrishna SP (2020) Extraction and characterization of endogenous cellulases in Achatina fulica for lignocellulose digestion. Fundam Appl Agric 5(2):224–234. https://doi.org/10.5455/faa.91698

    Article  Google Scholar 

  48. Zhang D, Lax AR, Bland JM, Allen AB (2011) Characterization of a new endogenous endo-β-1,4-glucanase of Formosan subterranean termite (Coptotermes formosanus). Insect Biochem Mol Biol 41(4):211–218. https://doi.org/10.1016/j.ibmb.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  49. Cairo JP, Oliveira LC, Uchima CA, Alvarez TM, Citadini AP, Cota J, Leonardo FC, Costa-Leonardo AM, Carazzolle MF, Costa FF, Pereira GA, Squina FM (2013) Deciphering the synergism of endogenous glycoside hydrolase families 1 and 9 from Coptotermes gestroi. Insect Biochem Mol Biol 43(10):970–981. https://doi.org/10.1016/j.ibmb.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  50. Wang HJ, Hsiao YY, Chen YP, Ma TY, Tseng CP (2016) Polarity alteration of a calcium site induces a hydrophobic interaction network and enhances Cel9A endoglucanase thermostability. Appl Environ Microbiol 82(6):1662–1674. https://doi.org/10.1128/AEM.03326-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang L, Fan Y, Zheng H, Du F, Zhang KQ, Huang X, Wang L, Zhang M, Niu Q (2013) Isolation and characterization of a novel endoglucanase from a Bursaphelenchus xylophilus metagenomic library. PLoS One 8(12):e82437. https://doi.org/10.1371/journal.pone.0082437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Elvan H, Ertunga NS, Yildirim M, Colak A (2010) Partial purification and characterisation of endoglucanase from an edible mushroom Lepista flaccida. Food Chem 123(2):291–295. https://doi.org/10.1016/j.foodchem.2010.04.034

    Article  CAS  Google Scholar 

  53. Yang Y, Zhang X, Yin Q, Fang W, Fang Z, Wang X, Zhang X, Xiao Y (2015) A mechanism of glucose tolerance and stimulation of GH1 beta-glucosidases. Sci Rep 5:17296. https://doi.org/10.1038/srep17296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Instituto Nacional de Metrologia, Qualidade e Tecnologia – INMETRO and by the research foundations Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, and Conselho Nacional de Desenvolvimento Científico e Tecnologico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

Y.B.S., G.L.P., and R.B.F. conceived and designed the experiment(s), Y.B.S, C.S.G, and S.M.N.S. conducted the experiments. W.S., N.H., and E.A.M. analyzed the results and performed a critical revision of the manuscript.

Corresponding author

Correspondence to Ednildo de Alcantara Machado.

Ethics declarations

Ethics Approval

Not applicable for that section.

Consent to Participate and Consent for Publication

All authors read, reviewed, and approved the final manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5924 KB)

Supplementary file2 (MP4 56758 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sade, Y.B., Gonçalves, C.S., Scapin, S.M.N. et al. Identification and Characterization of a Glycoside Hydrolase Family 9 Member from the Digestive Gland of the Snail Achatina fulica. Bioenerg. Res. 15, 466–478 (2022). https://doi.org/10.1007/s12155-021-10303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10303-2

Keywords

Navigation