Skip to main content
Log in

Enrichment and Identification of Cellulolytic Bacteria from the Gastrointestinal Tract of Giant African Snail, Achatina fulica

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The cellulolytic bacterial community structure in gastrointestinal (GI) tract of Achatina fulica was studied using culture-independent and -dependent methods by enrichment in carboxymethyl cellulose (CMC). Culture-dependent method indicated that GI tract of snail was dominated by Enterobacteriaceae members. When tested for cellulase activities, all isolates obtained by culture-dependent method showed both or either of CMCase or avicelase activity. Isolate identified as Citrobacter freundii showed highest CMCase and medium avicelase activity. Sequencing of clones from the 16S rRNA gene clone library identified ten operational taxonomic units (OTUs), which were affiliated to Enterobacteriaceae of phylum Gammaproteobacteria. Of these ten OTUs, eight OTUs closely matched with Enterobacter and Klebsiella genera. The most abundant OTU allied to Klebsiella oxytoca accounted for 70 % of the total sequences. The members of Klebsiella and Enterobacter were observed by both methods indicating their dominance among the cellulolytic bacterial community in the GI tract of the snail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kamm, B., & Kamm, M. (2004). Applied Microbiology and Biotechnology, 64, 137–145.

    Article  CAS  Google Scholar 

  2. Lynd, L. R., Cushman, J. H., Nichols, R. J., & Wyman, C. E. (1991). Science, 251, 1318–1323.

    Article  CAS  Google Scholar 

  3. Lynd, L. R., Laser, M. S., Bransby, D., & Dale, B. E. (2008). Nature Biotechnology, 26, 169–172.

    Article  CAS  Google Scholar 

  4. Sun, J. Z., & Scharf, M. E. (2010). Insect Sci., 17, 163–165.

    Article  Google Scholar 

  5. Soccol, C. R., Vandenberghe, L. P., Medeiros, A. B. P., Karp, S. G., Buckeridge, M., Ramos, L. P., Pitarelo, A. P., Ferreira-Leitão, V., Gottschalk, L. M., Ferrara, M. A., da Silva, B. E. P., de Moraes, L. M., Araújo, J. D. A., & Torres, F. A. (2010). Bioresource Technology, 101, 4820–4825.

    Article  CAS  Google Scholar 

  6. Hamelinck, C. N., Van Hooijdonk, G., & Faaij, A. C. P. (2005). Biomass and Bioenergy, 28, 384–410.

    Article  CAS  Google Scholar 

  7. Kumar, R., Singh, S., & Singh, O. V. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 377–391.

    Article  CAS  Google Scholar 

  8. Torres, M., & Campillo, C. C. (1984). Applied Microbiology and Biotechnology, 19, 430–434.

    Article  Google Scholar 

  9. Haruta, S., Cui, Z., Huang, Z., Li, M., Ishii, M., & Igarashi, Y. (2002). Applied Microbiology and Biotechnology, 59, 529–534.

    Article  CAS  Google Scholar 

  10. Charrier, M.Y., Gerard, F., Gaillard-Martinie, B., Kader, A. & Gerard, A. (2006) Biological Research, 9716–9760.

  11. Sarunyou, W., Rattanachomsri, U., Laothanachareon, T., Eurwilaichitr, L., Igarashi, Y., & Champreda, V. (2010). Enzyme and Microbial Technology, 47, 283–290.

    Article  Google Scholar 

  12. Maki, M., Leung, K. T., & Qin, W. (2009). International Journal of Biological Sciences, 5, 500–516.

    Article  CAS  Google Scholar 

  13. Rauth, S.K. & Barker, G.M. (2002). In L. R. Hamilton (Ed.) Mollusks as crop pest. KABI.

  14. Hatziioannou, H., Eleutheriadis, N., & Itriadou, L. M. (1994). Journal of Molluscan Studies, 60, 331–341.

    Article  Google Scholar 

  15. Pawar, K. D., Banskar, S., Rane, S. D., Charan, S. S., Kulkarni, G. J., Sawant, S. S., Ghate, H. V., Patole, M. S., & Shouche, Y. S. (2012). Microbiology Open, 1, 415–426.

    Article  Google Scholar 

  16. Cardoso, A. M., Cavalcante, J. J. V., Vieira, R. P., Lima, J. L., Grieco, M. A. B., Clementino, M. M., Vasconcelos, A. T. R., Garcia, E. S., Souza, W. D., Albano, R. M., & Martins, O. B. (2012). PloS One, 7, e33440.

    Article  CAS  Google Scholar 

  17. Cardoso, A. M., Cavalcante, J. J. V., Cantão, M. E., Thompson, C. E., Flatschart, R. B., Glogauer, A., Scapin, S. M. N., Sade, Y. B., Beltrão, P. J. M. S. I., Gerber, A. L., Martins, O. B., Garcia, E. S., Souza, W. D., & Vasconcelos, A. T. R. (2012). PloS One, 7, e48505.

    Article  CAS  Google Scholar 

  18. Nitisinprasert, S., & Temmes, A. (1991). Journal of Applied Bacteriology, 71, 154–161.

    Article  CAS  Google Scholar 

  19. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  20. Pidiyar, V. J., Jangid, K., Patole, M. S., & Shouche, Y. S. (2004). American Journal of Tropical Medicine and Hygiene, 70, 597–603.

    CAS  Google Scholar 

  21. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). Journal of Bacteriology, 173, 697–703.

    CAS  Google Scholar 

  22. Sambrook, J., Fritsch, E., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Press.

    Google Scholar 

  23. Ashelford, K. E., Chuzhanova, N. A., Fry, J. C., Jones, A. J., & Weightman, A. J. (2006). Applied and Environmental Microbiology, 72, 5734–5741.

    Article  CAS  Google Scholar 

  24. Huber, T., Faulkner, G., & Hugenholtz, P. (2004). Bioinformatics, 20, 2317–2319.

    Article  CAS  Google Scholar 

  25. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  Google Scholar 

  26. Xia, X., & Xie, Z. (2001). Journal of Heredity, 92, 371–373.

    Article  CAS  Google Scholar 

  27. Felsenstein, J. (1989). Cladistics, 5, 164–166.

    Google Scholar 

  28. Kimura, M. (1980). Journal of Molecular Evolution, 16, 111–120.

    Article  CAS  Google Scholar 

  29. Schloss, P. D., & Handelsman, J. (2005). Applied and Environmental Microbiology, 71, 1501–1506.

    Article  CAS  Google Scholar 

  30. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  31. Park, D.S., Oh, H.W., Jeong, W.J., Kim, H., Park, H.Y. and Bae, K.S. (2007) The Journal of Microbiology, 394–401.

  32. Anderson, J. M., & Bignell, D. E. (1980). Soil Biology and Biochemistry, 12, 251–254.

    Article  Google Scholar 

  33. Wood, S., & Griffiths, B. S. (1988). Pedobiologia, 31, 89–94.

    Google Scholar 

  34. Schultz, J. E., & Breznak, J. A. (1978). Applied and Environmental Microbiology, 35, 930–936.

    CAS  Google Scholar 

  35. Harada, H., Oyaizu, H., & Ishikawa. (1996). Journal of General and Applied Microbiology, 42, 17–26.

    Article  CAS  Google Scholar 

  36. Watkins, B., & Simkiss, K. (1990). Journal of Molluscan Studies, 56, 267–274.

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Dr. Y. S. Shouche, for his kind permission to use sequencing facility at NCCS, Pune, India. K.D.P. acknowledges University Grant Commission (UGC), Government of India, for providing Dr. D. S. Kothari PostdoctoralResearch fellowship.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran D. Pawar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Detection of cellulolytic (CMCase) activity of isolates purified from enriched cultures. Isolates were patched on BMS Agar plates with 0.5 % CMC, incubated for 3 days at 37 °C and then zone of clearance was developed using Gram’s Iodine. (DOC 96 kb)

Fig. S2

Rarefaction curves generated for 16S rRNA gene clone libraries generated from community genomic DNA isolated from the enriched culture (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, K.D., Dar, M.A., Rajput, B.P. et al. Enrichment and Identification of Cellulolytic Bacteria from the Gastrointestinal Tract of Giant African Snail, Achatina fulica . Appl Biochem Biotechnol 175, 1971–1980 (2015). https://doi.org/10.1007/s12010-014-1379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1379-z

Keywords

Navigation