Skip to main content

Advertisement

Log in

Bioethanol Production from Green Alga Chlorococcum minutum through Reduced Graphene Oxide-Supported Platinum-Ruthenium (Pt-Ru/RGO) Nanoparticles

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Due to the continuous depletion of non-renewable fossil fuels, there is a focus on renewable energy sources such as bioethanol, biobutanol, biohydrogen and biodiesel. Microalgae have been used to yield high sugar content via alteration of the photosynthetic pathway, thereby enhancing ethanol production. Moreover, certain nanostructured composites in the medium supports biomass enhancement through modification of the photosynthetic pathway. In the present study, reduced graphene oxide-supported platinum-ruthenium (Pt-Ru/RGO) nanoparticles were synthesised, characterised and assessed the role in tris–acetate phosphate (TAP) medium for the improvement of green alga Chlorococcum minutum (C. minutum) biomass under in vitro conditions. Chemically, Pt-Ru/RGO nanoparticles play a useful role as a catalyst in the improvement of chemical reactions and influence the electron supply/transport system. Total chlorophyll and wet biomass contents were 8.26 mg/L and 14.0 g/L in TAP with 1.0 mg/L of nano-Pt-Ru/RGO (CM2) medium when compared with untreated cultures, but total lipid content was more (24.5 g/100 g) in TAP with 0.5 mg/L of nano-Pt-Ru/RGO (CM1) medium. Later, these nano Pt-Ru/RGO-assisted algal feedstocks were used to convert sugars into ethanol by Saccharomyces cerevisiae (yeast) dark fermentation. The current standardised TAP media in the presence of 0.5 or 1.0 mg/L of Pt-Ru/RGO nanoparticles (CM1 or CM2 medium) improved the ethanol production (32.6 and 31.2 g/L at 72 h respectively) from feedstocks of C. minutum. In conclusion, Pt-Ru/RGO nanoparticles can enhance the chemical reactions in photosynthesis likely at the electron transport system and increased the biomass in turn ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Nanomaterial data in the present investigation is available from Dr. Loka Subramanyam Sarma, Department of Chemistry, Yogi Vemana University.

References

  1. Garcia-Olivares A, Oleg Osychenko JS (2018) Transportation in a 100% renewable energy system. Energy Convers Manag 158:266–285. https://doi.org/10.1016/j.enconman.2017.12.053

    Article  Google Scholar 

  2. Behera BK, Varma A (2019) Energy security. In: Bioenergy for sustainability and security, 1st edn. Springer, Cham, pp1–14. https://doi.org/10.1007/978-3-319-96538-3_1

  3. Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690. https://doi.org/10.1016/j.biotechadv.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  4. Toor M, Kumar SS, Malyan SK, Bishnoi NR, Mathimani T, Rajendran K, Pugazhendhi A (2020) An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere 242:125080. https://doi.org/10.1016/j.chemosphere2019.125080

    Article  CAS  PubMed  Google Scholar 

  5. Mathimani T, Pugazhendhi A (2019) Utilization of algae for biofuel, bio-products and bio-remediation. Biocatal Agric Biotechnol 1:326–330. https://doi.org/10.1016/j.bcab.2018.12.007

    Article  Google Scholar 

  6. Park HR, Jung KA, Lim SR, Park JM (2014) Quantitative sustainability assessment of seaweed biomass as bioethanol feedstock. BioEnergy Res 7:974–985. https://doi.org/10.1007/s12155-014-9430-z

    Article  CAS  Google Scholar 

  7. Ganesan R, Manigandan S, Samuel MS, Shanmuganathan R, Brindhadevi K, Chi NT, Duc PA, Pugazhendhi A (2020) A review on prospective production of biofuel from microalgae. Biotechnol Rep 23:e00509. https://doi.org/10.1016/j.btre.2020.e00509

    Article  Google Scholar 

  8. Jacob JM, Ravindran R, Narayanan M, Samuel SM, Pugazhendhi A, Kumar G (2020) Microalgae: a prospective low cost green alternative for nanoparticle synthesis. Curr Opin Environ Sci Health In press.https://doi.org/10.1016/j.coesh.2019.12.005

  9. Kumar VB, Pulidindi IN, Kinel-Tahan Y, Yehoshua Y, Gedanken A (2016) Evaluation of the potential of Chlorella vulgaris for bioethanol production. Energy Fuels 30:3161–3166. https://doi.org/10.1021/acs.energyfuels.6b00253

    Article  CAS  Google Scholar 

  10. Mussatto SI, Dragone G, Guimarães PM, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market and challenges of bio-ethanol production. Biotechnol Adv 28:817–830. https://doi.org/10.1016/j.biotechadv.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  11. González-Fernández C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30:1655–1661. https://doi.org/10.1016/j.biotechadv.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  12. Markou G, Angelidaki I, Georgakakis D (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96:631–645. https://doi.org/10.1007/s00253-012-4398-0

    Article  CAS  PubMed  Google Scholar 

  13. Varaprasad D, Narasimham D, Paramesh K, Ragasudha N, Himabindu Y, Keerthi Kumari M, Nazaneen Parveen S, Chandrasekhar T (2021) Improvement of ethanol production using green alga Chlorococcum minutum. Environ Technol 49:1383–1391. https://doi.org/10.1080/09593330.2019.1669719

    Article  CAS  Google Scholar 

  14. Golbeck JH, Moore T, Rappaport F (2013) Metals in bioenergetics and biomimetics systems. Biochim Biophy Acta-Bioenerg 1827:869–870. https://doi.org/10.1016/j.bbabio.2013.06.003

  15. Hossain N, Mahlia TMI, Saidur R (2019) Latest development in microalgae-biofuel production with nano-additives. Biotechnol Biofuels 12:125. https://doi.org/10.1186/s13068-019-1465-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matorin DN, Karateyeva AV, Osipov VA, Lukashev EP, Seifullina NK, Rubin AB (2010) Influence of carbon nanotubes on chlorophyll fluorescence parameters of green algae Chlamydomonas reinhardtii. Nanotechnol Russia 5:320–327. https://doi.org/10.1134/S199507801005006X

    Article  Google Scholar 

  17. Cardinale BJ, Bier R, Kwan C (2012) Effects of TiO2 nanoparticles on the growth metabolism of three species of fresh water algae. J Nanopart Res 14:913. https://doi.org/10.1007/s11051-012-0913-6

    Article  CAS  Google Scholar 

  18. Rana MS, Bhushan S, Prajapathi SK (2020) New insights on improved growth and biogas production potential of Chlorella pyrenoidosa through intermittent iron oxide nanoparticle supplementation. Sci Rep 10:14119. https://doi.org/10.1038/s41598-020-71141-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41:116–126. https://doi.org/10.1007/BF03216589

    Article  CAS  Google Scholar 

  20. Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A (2011) Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorellasp. J Nanopart Res 13:3287–3299. https://doi.org/10.1007/s11051-011-0243-0

    Article  CAS  Google Scholar 

  21. Nogueira PFM, Nakabayashi D, Zucolotto V (2015) The effects of graphene oxide on green algae Raphidocelis subcapitata. Aquat Toxicol 166:29–35. https://doi.org/10.1016/j.aquatox.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  22. da Costa CH, Perreault F, Oukarroum A, Melegari SP, Popovic R, Matias WG (2016) Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii. Sci Total Environ 565:951–960. https://doi.org/10.1016/j.scitotenv.2016.01.028

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Chan KY (2003) Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties. Chem Mater 15:451–459. https://doi.org/10.1021/cm0203868

    Article  CAS  Google Scholar 

  24. Tan IS, Lam MK, Lee KT (2013) Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production. CarbohdrPolym 94:561–566. https://doi.org/10.1016/j.carbpol.2013.01.042

    Article  CAS  Google Scholar 

  25. Serra A, Atal R, Garcia-Amoros J, Sepulveda B, Gomez E, Noques J, Philippe L (2019) Hybrid Ni@ZnO@ZnS-microalgae for circular economy: a smart route to the efficient integration of solar photocatalytic water decontamination and bioethanol production. Adv Sci 7:1902447. https://doi.org/10.1002/advs.201902447

    Article  CAS  Google Scholar 

  26. Murphin Kumar PS, Thiripuranthagan S, Imai T, Kumar G, Pugazhendhi A, Vijayan SR, Esparza R, Abe H, Krishnan SK (2017) Pt nanoparticles supported on mesoporous CeO2 nanostructures obtained through green approach for efficient catalytic performance toward ethanol electro-oxidation. ACS Sustain Chem Eng 5:11290–11299. https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.7b02019

  27. Ahmad MS, Cheng CK, Bhuyar P, Atabani AE, Pugazhendhi A, Chi NT, Witoon T, Lim JW, Juan JC (2021) Effect of reaction conditions on the lifetime of SAPO-34 catalysts in methanol to olefins process-a review. Fuel 283:118851. https://doi.org/10.1016/j.fuel.2020.118851

    Article  CAS  Google Scholar 

  28. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  29. Zhao J, Zhang L, Xue H, Wang Z, Hu H (2012) Methanol electrocatalytic oxidation on highly dispersed platinum–ruthenium/graphene catalysts prepared in supercritical carbon dioxide–methanol solution. RSC Adv 2:9651–9659. https://doi.org/10.1039/C2RA00027J

    Article  CAS  Google Scholar 

  30. Paramesh K, Reddy NL, Shankar MV, Chandrasekhar T (2018) Enhancement of biological hydrogen production using green alga Chlorococcum minutum. Int J Hydrog Energy 43:3957–3966. https://doi.org/10.1016/j.ijhydene.2017.09.005

    Article  CAS  Google Scholar 

  31. Paramesh K, Chandrasekhar T (2020) Improvement of photobiological hydrogen production in Chlorococcum minutum using various oxygen scavengers. Int J Hydrog Energy 13:7641–7646. https://doi.org/10.1016/j.ijhydene.2019.05.216

    Article  CAS  Google Scholar 

  32. Ravi E, Paul B (2012) Microwave assisted greener synthesis of nickel nanoparticles using sodium hypophosphite. Mater Lett 76:36–39. https://doi.org/10.1016/j.matlet.2012.02.049

    Article  CAS  Google Scholar 

  33. Zhu HT, Zhang CY, Yin YS (2004) Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. J Cryst Growth 270:722–728. https://doi.org/10.1016/j.jcrysgro.2004.07.008

    Article  CAS  Google Scholar 

  34. Raghavendra P, Reddy GV, Sivasubramanian R, Chandana PS, Sarma LS (2018) Reduced graphene oxide-supported Pd@Au bimetallic nanoelectrocatalyst for enhanced oxygen reduction reaction in alkaline media. Int J Hydrog Energy 43:4125–4135. https://doi.org/10.1016/j.ijhydene.2017.07.199

    Article  CAS  Google Scholar 

  35. Arnon D (1949) Copper enzymes in isolated chloroplasts Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Varaprasad D, Raga Sudha N, Nazaneen Parveen S, Chandrasekhar T (2019) Effect of various solvents on chlorophyll and carotenoid extraction in green algae: Chlamydomonas reinhardtii and Chlorella vulgaris. Ann Plant Soil Res 21:341–345

    Google Scholar 

  37. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139//059-099

    Article  CAS  PubMed  Google Scholar 

  38. Sulfahri AM, Sumitro SB, Saptasari M (2016) Bioethanol production from algae Spirogyra hyalina using Zymomonas mobilis. Biofuels 7:621–626. https://doi.org/10.1080/17597269.2016.1168028

    Article  CAS  Google Scholar 

  39. Caputi A, Ueda M, Brown T (1968) Spectrophotometric determination of ethanol in wine. Am J Enol Vitic 19:160–165

    CAS  Google Scholar 

  40. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom 195:145–154. https://doi.org/10.1016/j.elspec.2014.07.003

    Article  CAS  Google Scholar 

  41. Vargas-Estrada L, Torres-Arellano S, Longoria A, Arias DM, Okoye PU, Sebastian PJ (2020) Role of nanoparticles on microalgal cultivation: a review. Fuel 280:118598. https://doi.org/10.1016/j.fuel.2020.118598

    Article  CAS  Google Scholar 

  42. Rana MS, Bhushan S, Sudhakar DR, Prajapathi SK (2020) Effect of iron oxide nanoparticles on growth and biofuel potential of Chlorella spp. Algal Res 49:101942. https://doi.org/10.1016/j.algal.2020.101942

    Article  Google Scholar 

  43. Mykhaylenko NF, Zolotareva EK (2017) The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae Chlorella vulgaris. Nanoscale Res Lett 12:147. https://doi.org/10.1186/s11671-017-1914-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He M, Yan Y, Pei F, Wu M, Gebreluel T, Zou S, Wang C (2017) Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Sci Rep 7:15526. https://doi.org/10.1038/s41598-017-15667-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Raghavendra P, Reddy GV, Sivasubramanian R, Chandana PS, Sarma LS (2017) Facile fabrication of Pt-Ru nanoparticles immobilized on reduced graphene oxide support for the electrooxidation of methanol and ethanol. Chem Select 2:11762–11770. https://doi.org/10.1002/slct.201702636

    Article  CAS  Google Scholar 

  46. Bathinapatla S, Maseed H, Yellaturu C, Vadali SVSS, Madhavi G, Loka SS (2019) Pt-free graphenaceous composite as an electro-catalyst for efficient oxygen reduction reaction. Nanoscale 11:13300–13308. https://doi.org/10.1039/C9NR02912E

    Article  Google Scholar 

  47. Leo VV, Singh BP (2018) Prospectus of nanotechnology in bioethanol productions. In: Srivastava, Srivastava M, Pandey H, Mishra P, Ramteke P (eds) Green Nanotechnology for Biofuel Production. Biofuel and Biorefinery Technologies Springer, Cham. pp 129–139. https://doi.org/10.1007/978-3-319-75052-1_9

  48. Anto S, Mukherjee SS, Muthappa R, Mathimani T, Deviram G, Kumar SS, Verma TK, Pugazhedhi A (2020) Algae as green energy reserve: technological outlook on biofuel production. Chemosphere 242:125079. https://doi.org/10.1016/j.chemosphere.2019.125079

    Article  CAS  PubMed  Google Scholar 

  49. Lin R, Cheng J, Ding L, Song W, Liu M, Zhou J, Cen K (2016) Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes. Bioresour Technol 207:213–219. https://doi.org/10.1016/j.biortech.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  50. Manzo S, Miglietta ML, Rametta G, Buono S, Di Francia G (2013) Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci Total Environ 445:371–376. https://doi.org/10.1016/j.scitotenv.2012.12.051

    Article  CAS  PubMed  Google Scholar 

  51. Manzo S, Buono S, Rametta G, Miglietta M, Schiavo S, Di Francia G (2015) The diverse toxic effect of SiO2 and TiO2 nanoparticles toward the marine microalgae Dunaliella tertiolecta. Environ Sci Pollut Res 22:15941–15951. https://doi.org/10.1007/s11356-015-4790-2

    Article  CAS  Google Scholar 

  52. Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542. https://doi.org/10.1016/j.biotechadv.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  53. Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, Chang JS (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10. https://doi.org/10.1016/j.bej.2013.03.006

    Article  CAS  Google Scholar 

  54. Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF (2009) Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microbial Cell Fact 8:40. https://doi.org/10.1186/1475-2859-8-40

    Article  CAS  Google Scholar 

  55. Kim KH, Choi IS, Kim HM, Wi SG, Bae HJ (2014) Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour Technol 153:47–54. https://doi.org/10.1016/j.biortech.2013.11.059

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Mathivanan, University of Madras, Chennai, India, for C. minutum culture and also Dr. L.V. Reddy and Dr. Veda, Department of Microbiology, Yogi Vemana University, Kadapa, India, for their technical help.

Author information

Authors and Affiliations

Authors

Contributions

TCS is designed the work and DVP, PR, LSS and SNP executed the work. DVP, PR and NRS carried out the statistics and figures work. DVP and TCS wrote the manuscript and LSS, SNP, PSC and MSC provided the suggestions and improved the manuscript.

Corresponding author

Correspondence to T. Chandrasekhar.

Ethics declarations

Ethics Approval and Consent to Participate

This work does not contain any experiment with human or animal material.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Morphological and structural details of Pt-Ru/RGO nanoparticles. a Low-resolution TEM image, b high-resolution TEM, c XRD analysis (JPG 77 kb)

Supplementary Fig. 2

Growth and biomass of C. minutum in various media (JPG 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varaprasad, D., Raghavendra, P., Sudha, N.R. et al. Bioethanol Production from Green Alga Chlorococcum minutum through Reduced Graphene Oxide-Supported Platinum-Ruthenium (Pt-Ru/RGO) Nanoparticles. Bioenerg. Res. 15, 280–288 (2022). https://doi.org/10.1007/s12155-021-10282-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10282-4

Keywords

Navigation