Skip to main content

Advertisement

Log in

The diverse toxic effect of SiO2 and TiO2 nanoparticles toward the marine microalgae Dunaliella tertiolecta

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) are widely used in many industrial applications. NP fate and behavior in seawater are a very important issue for the assessment of their environmental impact and potential toxicity. In this study, the toxic effects of two nanomaterials, silicon dioxide (SiO2) and titanium dioxide (TiO2) NPs with similar primary size (~20 nm), on marine microalgae Dunaliella tertiolecta were investigated and compared. The dispersion behavior of SiO2 and TiO2 NPs in seawater matrix was investigated together with the relative trend of the exposed algal population growth. SiO2 aggregates rapidly reached a constant size (600 nm) irrespective of the concentration while TiO2 NP aggregates grew up to 4 ± 5 μm. The dose–response curve and population growth rate alteration of marine alga D. tertiolecta were evaluated showing that the algal population was clearly affected by the presence of TiO2 NPs. These particles showed effects on 50 % of the population at 24.10 [19.38–25.43] mg L−1 (EC50) and a no observed effect concentration (NOEC) at 7.5 mg L−1. The 1 % effect concentration (EC1) value was nearly above the actual estimated environmental concentration in the aquatic environment. SiO2 NPs were less toxic than TiO2 for D. tertiolecta, with EC50 and NOEC values one order of magnitude higher. The overall toxic action seemed due to the contact between aggregates and cell surfaces, but while for SiO2 a direct action upon membrane integrity could be observed after the third day of exposure, TiO2 seemed to exert its toxic action in the first hours of exposure, mostly via cell entrapment and agglomeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aruoja V, Dubourguier HC, Kasemets K (2008) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  Google Scholar 

  • ASTM standard guide for acute toxicity test with the rotifer Brachionus (1998) Annual Book of ASTM Standards Philadelphia; 1440–1491

  • Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755. doi:10.1038/nature05317

    Article  CAS  Google Scholar 

  • Bielmyer-Fraser GK, Jarvis TA, Lenihan HS, Miller RJ (2014) Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton. Environ Sci Technol 48:13443–13450. doi:10.1021/es501187g

    Article  CAS  Google Scholar 

  • Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ, Hussain SM (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanoparticle Res 11:1361–1374. doi:10.1007/s11051-008-9523-8

    Article  CAS  Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 15(40):4374–81

    Article  Google Scholar 

  • Cesar A, Marin-Guirao L, Vita R, Marín A (2004) Amphipod and sea urchin tests to assess the toxicity of Mediterranean sediments: the case of Portman Bay. Sci Mar 68(Suppl 1):205–213. doi:10.3989/scimar.2004.68s1205

    CAS  Google Scholar 

  • Clément L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chem 90:1083–1090. doi:10.1016/j.chemosphere.2012.09.013

    Google Scholar 

  • Fujiwara K, Suematsu H, Kiyomiya E, Aoki M, Sato M, Moritoki N (2008) Size-dependent toxicity of silica nano-particles to Chlorella kessleri. J Environ Sci Health, Part A: Environ Sci Eng 43:1167–1173. doi:10.1080/10934520802171675

    Article  CAS  Google Scholar 

  • Future markets (2012) The global market for nanomaterials 2002-2016: production volumes, revenues and end use markets; Future Markets, Inc.: 2012; p 371

  • Garner KL, Keller AA (2014) Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanoparticle Res 16:2503. doi:10.1007/s11051-014-2503-2

    Article  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: WL Smith and MH Chanley. Culture of marine invertebrate animals. Eds Plenum Press, New York USA 1975: 26–60

  • Hall S, Bradley T, Moore JT, Kuykindall T, Minella L (2009) Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. NanoToxicol 3:91–97

    Article  CAS  Google Scholar 

  • Handy RD, Von Der Kammer F, Lead JR, Hassellov M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314. doi:10.1007/s10646-008-0199-8

    Article  CAS  Google Scholar 

  • Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2010) Algal testing of titanium dioxide NPs-testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269:190–197. doi:10.1016/j.tox.2009.08.008

    Article  CAS  Google Scholar 

  • Huang CP, Cha DK, Ismat SS (2005) Progress report: short-term chronic toxicity of photocatalytic nanoparticles to bacteria, algae, and zooplankton. EPA Grant Number; R831721. (http://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/7384/report/)

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ Sci Pollut Res 13:225–232

    Article  CAS  Google Scholar 

  • IRSA-CNR (1978) Metodologia di saggio algale per lo studio della contaminazione delle acque marine. In: Quaderni dell’ Istituto di Ricerca sulle Acque. Milano: n. 39-IT ISNN 0390–6329; 116

  • Iswarya V, Bhuvaneshwari M, Alex SA, Iyer S, Chaudhuri G, Chandrasekaran PT, Bhalerao G, Chakravarty S, Raichur AM, Chandrasekaran N, Mukherjee A (2015) Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquat Toxicol 161:154–169. doi:10.1016/j.aquatox.2015.02.006

    Article  CAS  Google Scholar 

  • Ji J, Long Z, Lin D (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170:525–30

    Article  CAS  Google Scholar 

  • Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 15:1962–7. doi:10.1021/es902987d

    Article  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanoparticle Res 15:1692. doi:10.1007/s11051-013-1692-4

    Article  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–51

    Article  CAS  Google Scholar 

  • Lee WM, An YJ (2013) Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chem 91(4):536–544

    CAS  Google Scholar 

  • Li X, Ping X, Xiumei S, Zhenbin W, Liqiang X (2005) Toxicity of cypermethrin on growth, pigments, and superoxide dismutase of Scenedesmus obliquus. Ecotoxicol Environ Saf 60:188–192

    Article  CAS  Google Scholar 

  • Li F, Liang Z, Zheng X, Zhao W, Wu M, Wang Z (2015) Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquat Toxicol 158:1–13. doi:10.1016/j.aquatox.2014.10.014

    Article  Google Scholar 

  • Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39:9370–9376

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  Google Scholar 

  • Ma S, Lin D (2013) The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environ Sci Processes Impacts 15:145–160. doi:10.1039/C2EM30637A

    Article  CAS  Google Scholar 

  • Ma S, Zhou K, Yang K, Lin D (2015) Heteroagglomeration of oxide nanoparticles with algal cells: effects of particle type, ionic strength and pH. Environ Sci Technol 49:932–939

    Article  CAS  Google Scholar 

  • Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2 review of in vivo data. Environ Pollut 159:677–684. doi:10.1016/j.envpol.2010.11.027

    Article  CAS  Google Scholar 

  • Metin CO, Lake LW, Miranda CR, Nguyen QP (2011) Stability of aqueous silica nanoparticle dispersions. J Nanoparticle Res 13:839–850. doi:10.1007/s11051-010-0085-1

    Article  CAS  Google Scholar 

  • Miglietta ML, Rametta G, Di Francia G, Manzo S, Rocco A, Carotenuto R, De Luca PF, Buono S (2011) Characterization of nanoparticles in seawater for toxicity assessment towards aquatic organisms. Lect Notes Electr Eng 91:425–429

    Article  Google Scholar 

  • Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS (2012) TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS One 7, e30321. doi:10.1371/journal.pone.0030321

    Article  CAS  Google Scholar 

  • Minetto D, Libralato G, VolpiGhirardini A (2014) Ecotoxicity of engineered TiO2 nanoparticles to saltwater organisms: an overview. Environ Int 66:18–27. doi:10.1016/j.envint.2014.01.012

    Article  CAS  Google Scholar 

  • Mizutani T, Arai K, Miyamoto M, Kimura Y (2006) Application of silica-containing nanocomposite emulsion to wall paint: a new environmentally safe paint of high performance. Prog Org Coat 55:276–83

    Article  CAS  Google Scholar 

  • Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH (2010) The nanosilica hazard: another variable entity. Part Fibre Toxicol 3(7):39. doi:10.1186/1743-8977-7-39

    Article  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386. doi:10.1007/s10646-008-0214-0

    Article  CAS  Google Scholar 

  • Ovecka M, Lang I, Baluska F, Ismail A, Illes P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54

    Article  CAS  Google Scholar 

  • Pakrashi S, Dalai S, Prathna TC, Shruti T et al (2013) Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations. Aquat Toxicol 15:34–45

    Article  Google Scholar 

  • Rittner M (2003) Nanoparticles—what’s now, what’s next? Chem Eng Prog 99:39–42

    Google Scholar 

  • Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74:1180–1187. doi:10.1016/j.ecoenv.2011.03.006

    Article  CAS  Google Scholar 

  • Scholze M, Boedeker W, Faust M, Backhaus T, Altenburger R, Grimme LH (2001) A general best-fit method for concentration response curves and the estimation of low effect concentrations. Environ Toxicol Chem 20:448–457

    Article  CAS  Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli: physico-chemical insight of the toxicity mechanism. Environ Sci Technol 40:6151–6156

    Article  CAS  Google Scholar 

  • US EPA (1993) A linear interpolation method for sublethal toxicity: the inhibition concentration (ICp) approach. National Effluent Toxicity Assessment Center Technical Report. Environmental Research Laboratory, Duluth, Minnesota 03–93

  • US EPA (1989) Dunnett’s test. EPA; 600/4-89/001

  • Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Lucas S, Janssen CR (2008) Ecotoxicity of silica nanoparticles to the green alga Pseudekirchneriella subcapitata: importance of surface area. Environ Toxicol Chem 27:1948–1957

    Article  Google Scholar 

  • Vo NT, Bufalino MR, Hartlen KD, Kitaev V, Lee LE (2014) Cytotoxicity evaluation of silica nanoparticles using fish cell lines. In Vitro Cell Dev Biol Anim 50:427–38. doi:10.1007/s11626-013-9720-3

    Article  CAS  Google Scholar 

  • von Moos N, Slaveykova VI (2014) Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae—state of the art and knowledge gaps. Nanotoxicology 8:605–30. doi:10.3109/17435390.2013.809810

    Article  Google Scholar 

  • Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73:1121–1128

    Article  CAS  Google Scholar 

  • Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 15(45):6032–40. doi:10.1021/es2010573

    Article  Google Scholar 

  • Wei C, Zhang Y, Guo J, Han B, Yang X, Yuan J (2010) Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J Environ Sci 22:155–160

    Article  CAS  Google Scholar 

  • Wessels JGH (1993) Tansley review no. 45 wall growth, protein excretion and morphogenesis in fungi. New Phytol 123:397–413. doi:10.1111/j.1469-8137.1993.tb03751

    Article  CAS  Google Scholar 

  • Xia B, Chen B, Sun X, Qu K, Ma F, Du M (2015) Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: growth inhibition, oxidative stress and internalization. Sci Total Environ 508:525–33. doi:10.1016/j.scitotenv.2014

    Article  CAS  Google Scholar 

  • Xiong L, Xie P, Sheng XM, Wu ZB, Xie LQ (2005) Toxicity of cypermethrin on growth, pigments, and superoxide dismutase of Scenedesmus obliquus. Ecotoxicol Environ Saf 60(2):188–192

    Article  Google Scholar 

  • Yeung KL, Leung WK, Yao N, Cao S (2009) Reactivity and antimicrobial properties of nanostructured titanium dioxide. Catal Today 143:218–224

    Article  CAS  Google Scholar 

  • Zappa G, Carconi P, Gatti R, D’Alessio A, Di Bonito R, Mosiello L, Zoani C (2009) Feasibility study for the development of a toner-reference material. Measurement 42:1491–1496

  • Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC (2008) Stability of commercial metal oxide nanoparticles in water. Water Res 42:2204–12. doi:10.1016/j.watres.2007.11.036

    Article  CAS  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43:4249–57. doi:10.1016/j.watres.2009.06.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their suggestions to improve the contents of this article.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Manzo.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Growth rate (mean ±SD) of D.tertiolecta population at different SiO2 concentrations. *Values significantly different from control (p<0.05) (PPT 134 kb)

Figure S2

Growth rate (mean ±SD) of D.tertiolecta population at different TiO2 concentrations. *Values significantly different from control (p<0.05) (PPT 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzo, S., Buono, S., Rametta, G. et al. The diverse toxic effect of SiO2 and TiO2 nanoparticles toward the marine microalgae Dunaliella tertiolecta . Environ Sci Pollut Res 22, 15941–15951 (2015). https://doi.org/10.1007/s11356-015-4790-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4790-2

Keywords

Navigation