Skip to main content
Log in

Ethanol Production from Enzymatic Hydrolysates Optimized of Agave tequilana Weber var. azul and Agave karwinskii bagasses

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The use of biofuels obtained from lignocellulosic materials is a technology that offers great potential for their production in the future. Agave bagasse is one of the most common wastes produced in Mexico through the Syrup, Tequila, and Mezcal industry. In particular, Tequila and Mezcal are one of the largest alcoholic beverages in the country and thousands of tons of this waste are produced annually. Therefore, agave bagasse is a promising alternative in Mexico to obtain second-generation bioethanol (2G). In this work, the use of enzymatic hydrolysates obtained by an alkaline pretreatment and enzymatic hydrolysis optimized using Agave tequilana Weber var. azul bagasse (AT) and Agave karwinskii bagasse (AK) was evaluated for ethanol production. For this, the optimization design of alkaline pretreatment and enzymatic hydrolysis was carried out using a Box-Behnken design. Both hydrolysates were fermented using Saccharomyces cerevisiae ITV01 yeast. The results showed that the best lignin reduction in the alkaline pretreatment was 77.6 and 84.29% utilizing AT and AK, respectively. Furthermore, a glucose concentration of 100.06–98.08 and 64.03–60.0 g/L was found in the enzymatic hydrolysis (AT and AK, respectively), reaching in the fermentation step a yield of 0.47 and 0.46 g/g, volumetric productivity of 1.97 and 1.14 g/L/h and a fermentation efficiency of 93.1 and 90.4% using AT and AK, respectively. These results are interesting to use agave bagasse for ethanol production in Mexico as an alternative to give added value and take advantage of its availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Castañón-Rodríguez JF, Portilla-Arias JA, Aguilar-Uscanga BR, Aguilar-Uscanga MG (2015) Effects of oxygen and nutrients on xylitol and ethanol production in sugarcane bagasse hydrolyzates. Food Sci Biotechnol 24(4):1381–1389. https://doi.org/10.1007/s10068-015-0177-x

    Article  CAS  Google Scholar 

  2. Partida-Sedas G, Montes-García N, Carvajal-Zarrabal O, López-Zamora L, Gómez-Rodríguez J, Aguilar-Uscanga MG (2016) Optimization of hydrolysis process to obtain fermentable sugars from sweet sorghum bagasse using a Box–Behnken design. Sugar Tech 19:1–9. https://doi.org/10.1007/s12355-016-0461-y

    Article  CAS  Google Scholar 

  3. Prasad S, Singh A, Joshi H (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50(1):1–39. https://doi.org/10.1016/j.resconrec.2006.05.007

    Article  Google Scholar 

  4. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second generation bioethanol production: concepts and recent developments. 3Biotech 5(4):337–353. https://doi.org/10.1007/s13205-014-0246-5

    Article  Google Scholar 

  5. Láinez M, Ruiz HA, Castro-Luna AA, Martínez-Hernández S (2018) Release of simple sugars from lignocellulosic biomass of Agave salmiana leaves subject to sequential pretreatment and enzymatic saccharification. Biomass Bioenergy 118:133–140. https://doi.org/10.1016/j.renene.2019.02.058

    Article  CAS  Google Scholar 

  6. Li H, Pattathil S, Foston MB (2014) Agave proves to be a low recalcitrant lignocellulosic feedstock for biofuels production on semi-arid lands. Biotechnol Biofuels 7:50. https://doi.org/10.1186/1754-6834-7-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farías-Sánchez JC, Velázquez-Valadez U, Vargas-Santillán A, Pineda-Pimentel MG, Mendoza-Chávez EA, Rutiaga-Quiñones JG, Saucedo-Luna J, Castro-Montoya AJ (2016) Production of fermentable sugars and hydrogen-rich gas from Agave tequilana biomass. Bioenergy Res 9(4):1015–1022. https://doi.org/10.1007/s12155-016-9799-y

    Article  CAS  Google Scholar 

  8. Aguirre-Fierro A, Ruiz HA, Cerqueira MA, Ramos-González R, Rodríguez-Jasso RM, Marques S, Lukasik RM (2020) Sustainable approach of high-pressure agave bagasse pretreatment for ethanol production. Renew Energy 155:1347–1354. https://doi.org/10.1016/j.renene.2020.04.055

    Article  CAS  Google Scholar 

  9. Pérez-Pimienta JA, Papa G, Gladden JM, Simmons BA, Sanchez A (2020) The effect of continuous tubular reactor technologies on the pretreatment of Lignocellulosic biomass for bioethanol production at pilot-scale. RSC Adv 210:18147–18159. https://doi.org/10.1039/d0ra04031b

    Article  CAS  Google Scholar 

  10. Pérez-Pimienta JA, Mojica-Álvarez RM, Sánchez-Herrera LM, Mittal A, Sykes RW (2018) Recalcitrance assessment of the agro-industrial residues from five agave species: ionic liquid pretreatment, saccharification and structural characterization. Bioenergy Res 11(3):551–561. https://doi.org/10.1007/s12155-018-9920-5

    Article  Google Scholar 

  11. Weber B, Sandoval-Moctezuma AC, Estrada-Maya A, Martínez-Cienfuegos IG, Durán-García MD (2020) Agave bagasse response to steam explosion and anaerobic treatment. Biomass Conv Bioref:1–11. https://doi.org/10.1007/s13399-020-00619-y

  12. Díaz-Blanco DI, Jesús R, López-Linares JC, Morales-Martínez TK, Ruiz E, Rios-González LJ, Romero I, Castro E (2018) Optimization of dilute acid pretreatment of Agave lechuguilla and ethanol production by co-fermentation with Escherichia coli MM160. Ind Crop Prod 114:154–163. https://doi.org/10.1016/j.indcrop.2018.01.074

    Article  CAS  Google Scholar 

  13. da Costa Correia JA, Júnior JEM, Gonçalves LRB, Rocha MVP (2013) Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters. Bioresour Technol 139:249–256. https://doi.org/10.1016/j.biortech.2013.03.153

    Article  CAS  Google Scholar 

  14. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729. https://doi.org/10.1021/ie801542g

    Article  CAS  Google Scholar 

  15. Alvarez CES, Miranda JL, Castro MR, Verdín GP, Pérez MAR, Hernández IC (2013) Alkaline pretreatment of Mexican pine residues for bioethanol production. Afr J Biotechnol 12(31):4956–4965. https://doi.org/10.5897/AJB2013.12461

    Article  Google Scholar 

  16. Joshi B, Bhatt MR, Sharma D, Joshi J, Malla R, Sreerama L (2011) Lignocellulosic ethanol production: current practices and recent developments. Biotechnol Mol Biol Rev 6(8):172–182 https://academicjournals.org/journal/BMBR/article-stat/8D9C02C11840 (Accessed 28 January 2020)

    CAS  Google Scholar 

  17. Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res:849–864 http://repositorio.lneg.pt/bitstream/10400.9/791/1/HEMICELLULOSE.pdf (Accessed 04 February 2020)

  18. Nigam PS, Pandey A (2009) Biotechnology for agro-industrial residues utilization. Springer Science and Business Media. https://doi.org/10.1007/978-1-4020-9942-7

  19. Sun RC (2009) Detoxification and separation of lignocellulosic biomass prior to fermentation for bioethanol production by removal of lignin and hemicelluloses. BioResources 4(2):452–455 Retrieved from https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_04_2_0452_Sun_Detox_Separation_Lignocel_Biomass (Accessed 17 February 2020)

    CAS  Google Scholar 

  20. Morando LEN, Gómez CXD, Zamora LL, Aguilar MGU (2014) Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with tween 80 using response surface methodology. Biomass Convers Biorefin 4:15–23. https://doi.org/10.1007/s13399-013-0091-5

    Article  CAS  Google Scholar 

  21. Lee JM (1992) Biochemical engineering. Prentice Hall, Englewood Cliffs, pp 21–31

    Google Scholar 

  22. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27. https://doi.org/10.1016/j.renene.2011.06.045

    Article  CAS  Google Scholar 

  23. Saucedo-Luna J, Castro-Montoya AJ, Martinez-Pacheco MM, Sosa-Aguirre CR, Campos-Garcia J (2011) Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. J Ind Microbiol Biot 38(6):725–732. https://doi.org/10.1007/s10295-010-0853-z

    Article  CAS  Google Scholar 

  24. Láinez M, Ruiz HA, Arellano-Plaza M, Martínez-Hernández S (2019) Bioethanol production from enzymatic hydrolysates of Agave salmiana leaves comparing S. cerevisiae and K. marxianus. Renew Energy 138:1127–1133. https://doi.org/10.1016/j.renene.2019.02.058

    Article  CAS  Google Scholar 

  25. Rijal D, Vancov T, McIntosh S, Ashwath N, Stanley GA (2016) Process options for conversion of Agave tequilana leaves into bioethanol. Ind Crop Prod 84:263–272. https://doi.org/10.1016/j.indcrop.2016.02.011

    Article  CAS  Google Scholar 

  26. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2010) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure (TP-510-42618)

  27. Ortiz-Muñiz B, Carvajal-Zarrabal O, Torrestiana-Sanchez B, Aguilar-Uscanga MG (2010) Kinetic study on ethanol production using Saccharomyces cerevisiae ITV01 yeast isolated from sugar cane molasses. J Chem Technol Biotechnol 85(10):1361–1367. https://doi.org/10.1002/jctb.2441

    Article  CAS  Google Scholar 

  28. Gutiérrez-Rivera B, Waliszewski-Kubiak K, Carvajal-Zarrabal O, Aguilar-Uscanga MG (2012) Conversion efficiency of glucose/xylose mixtures for ethanol production using Saccharomyces cerevisiae ITV01 and Pichia stipitis NRRL Y-7124. J Chem Technol Biotechnol 87(2):263–270. https://doi.org/10.1002/jctb.2709

    Article  CAS  Google Scholar 

  29. Fernández-López CL, Torrestiana-Sánchez B, Salgado-Cervantes MA, García PM, Aguilar-Uscanga MG (2012) Use of sugarcane molasses “B” as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations. Bioprocess Biosyst Eng 35(4):605–614. https://doi.org/10.1007/s00449-011-0633-9

    Article  CAS  PubMed  Google Scholar 

  30. Gutiérrez-Rivera B, Ortiz-Muñiz B, Gómez-Rodríguez J, Cárdenas-Cágal A, González JMD, Aguilar-Uscanga MG (2015) Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses “B” in a mixed yeast culture. Renew Energy 74:399–405. https://doi.org/10.1016/j.renene.2014.08.030

    Article  CAS  Google Scholar 

  31. Delfín-Ruíz ME, Calderón-Santoyo M, Ragazzo-Sánchez JA, Gómez-Rodríguez J, López-Zamora L, Aguilar-Uscanga MG (2019) Acid pretreatment optimization for xylose production from Agave tequilana Weber var. azul, Agave americana var. oaxacensis, Agave karwinskii, and Agave potatorum bagasses using a box-Behnken design. Biomass Conv Bioref:1. https://doi.org/10.1007/s13399-019-00497-z

  32. Saucedo-Luna J, Castro-Montoya AJ, Rico JL, Campos-García J (2010) Optimización de hidrólisis ácida de bagazo de Agave tequilana Weber. Rev Mex Ing Quim 9(1):91–97 http://www.scielo.org.mx/pdf/rmiq/v9n1/v9n1a11.pdf (Accessed 21 January 2020)

    CAS  Google Scholar 

  33. Li H, Foston MB, Kumar R, Samuel R, Gao X, Hu F, Wyman CE (2012) Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Adv 2(11):4951–4958. https://doi.org/10.1039/C2RA20557B

    Article  CAS  Google Scholar 

  34. Xiong L, Maki M, Guo Z, Mao C, Qin W (2014) Agave biomass is excellent for production of bioethanol and xylitol using Bacillus strain 65S3 and Pseudomonas strain CDS3. J Biobased Mater Bioenerg 8(4):422–428. https://doi.org/10.1166/jbmb.2014.1453

    Article  CAS  Google Scholar 

  35. Perez-Pimienta JA, Lopez-Ortega MG, Chavez-Carvayar JA, Varanasi P, Stavila V, Cheng G, Simmons BA (2015) Characterization of agave bagasse as a function of ionic liquid pretreatment. Biomass Bioenerg 75:180–188. https://doi.org/10.1016/j.biombioe.2015.02.026

    Article  CAS  Google Scholar 

  36. Velázquez-Valadez U, Farías-Sánchez JC, Vargas-Santillán A, Castro-Montoya AJ (2016) Tequilana weber agave bagasse enzymatic hydrolysis for the production of fermentable sugars: oxidative-alkaline pretreatment and kinetic modeling. Bioenergy Res 9(4):998–1004. https://doi.org/10.1007/s12155-016-9757-8

    Article  CAS  Google Scholar 

  37. Hernández-Salas JM, Villa-Ramírez MS, Veloz-Rendón JS, Rivera-Hernández KN, González-César RA, Plascencia-Espinosa MA, Trejo-Estrada SR (2009) Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour Technol 100(3):1238–1245. https://doi.org/10.1016/j.biortech.2006.09.062

    Article  CAS  PubMed  Google Scholar 

  38. Yang Q, Pan X (2012) Pretreatment of Agave americana stalk for enzymatic saccharification. Bioresour Technol 126:336–340. https://doi.org/10.1016/j.biortech.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  39. Arrizon J, Mateos JC, Sandoval G, Aguilar B, Solis J, Aguilar MG (2012) Bioethanol and xylitol production from different lignocellulosic hydrolysates by sequential fermentation. J Food Process Eng 35(3):437–454. https://doi.org/10.1111/j.1745-4530.2010.00599.x

    Article  CAS  Google Scholar 

  40. Caspeta L, Caro-Bermúdez MA, Ponce-Noyola T, Martinez A (2014) Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl Energy 113:277–286. https://doi.org/10.1016/j.apenergy.2013.07.036

    Article  CAS  Google Scholar 

  41. Corbin KR, Byrt CS, Bauer S, DeBolt S, Chambers D, Holtum JA, Bacic A (2015) Prospecting for energy-rich renewable raw materials: Agave leaf case study. PLoS One 10(8):e0135382. https://doi.org/10.1371/journal.pone.0135382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Villegas-Silva PA, Toledano-Thompson T, Canto-Canché BB, Larqué-Saavedra A, Barahona-Pérez LF (2014) Hydrolysis of Agave fourcroydes Lemaire (henequen) leaf juice and fermentation with Kluyveromyces marxianus for ethanol production. BMC Biotechnol 14(1):14. https://doi.org/10.1186/1472-6750-14-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the National Council of Science and Technology, Mexico (CONACyT) for the scholarship granted to Delfin-Ruíz Ma. Elizabeth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Aguilar-Uscanga.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delfin-Ruíz, M.E., Calderón-Santoyo, M., Ragazzo-Sánchez, J.A. et al. Ethanol Production from Enzymatic Hydrolysates Optimized of Agave tequilana Weber var. azul and Agave karwinskii bagasses. Bioenerg. Res. 14, 785–798 (2021). https://doi.org/10.1007/s12155-020-10196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10196-7

Keywords

Navigation