Skip to main content
Log in

Effects of oxygen and nutrients on xylitol and ethanol production in sugarcane bagasse hydrolyzates

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The influence of oxygen and nutrient supplementation on xylitol and ethanol production in a synthetic medium and sugarcane bagasse hydrolyzates using Candida tropicalis IEC5-ITV and Saccharomyces cerevisiae ITV01- RD was investigated for evaluation of bioconversion of pentoses and hexoses present in the lignocellulosic biomass. The best oxygen transfer rate (56.05 mg of O2/L/h) and xylitol and ethanol yields (0.67 and 0.47 g/g, respectively) were obtained in a synthetic medium. A yeast extract had a positive effect on xylitol and ethanol production (0.64 and 0.44 g/g, respectively) at a concentration of 1 g/L. C. tropicalis and S. cerevisiae exhibited not previously observed morphological changes depending on the nutrient composition. Use of sugarcane bagasse hydrolyzates requires a good supply of oxygen and addition of a yeast extract to improve xylitol and ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cardona CA, Sánchez OJ. Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technol. 98: 2415–2457 (2007)

    Article  CAS  Google Scholar 

  2. Olsson L, Nielsen J. The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: Utilization of industrial media. Enzyme Microb. Tech. 26: 785–792 (2000)

    Article  CAS  Google Scholar 

  3. Ishtar Snoek IS, Yde Steensma H. Factors involved in anaerobic growth of Saccharomyces cerevisiae. Yeast 24: 1–10 (2007)

    Article  CAS  Google Scholar 

  4. Matsushika A, Inoue H, Kodaki T, Sawayama S. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: Current state and perspectives. Appl. Microbiol. Biot. 84: 37–53 (2009)

    Article  CAS  Google Scholar 

  5. Rao RS, Jyothi CP, Prakasham RS, Sarma PN, Rao LV. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresource Technol. 97: 1974–1978 (2006)

    Article  CAS  Google Scholar 

  6. Granström TB, Izumori K, Leisola M. A rare sugar xylitol. Part I: The biochemistry and biosynthesis of xylitol. Appl. Microbiol. Biot. 74: 277–281 (2007)

    Article  Google Scholar 

  7. Huang CF, Jiang YF, Guo GL, Hwang WS. Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulose ethanol process. Bioresource Technol. 102: 3322–3329 (2011)

    Article  CAS  Google Scholar 

  8. Aranda-Barradas JS, Garibay-Orijel C, Badillo-Corona JA, Salgado-Manjarrez E. A stoichiometric analysis of biological xylitol production. Biochem. Eng. J. 50: 1–9 (2010)

    Article  CAS  Google Scholar 

  9. Oh DK, Kim SY, Kim JH. Increase of xylitol production rate by controlling redox potential in Candida parapsilosis. Biotechnol. Bioeng. 58: 440–444 (1998)

    Article  CAS  Google Scholar 

  10. Walker GM. Yeast Physiology and Biotechnology. John Wiley & Sons Ltd., London, UK. pp. 350–355 (1998)

    Google Scholar 

  11. Rabelo SC, Amezquita Fonseca NA, Andrade RR, Maciel Filho R, Costa AC. Ethanol production from enzymatic of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass Bioenerg. 35: 2600–2607 (2011)

    Article  CAS  Google Scholar 

  12. Ortiz-Zamora O, Cortes-García R, Ramírez-Lepe M, Gómez-Rodríguez J, Aguilar-Uscanga MG. Isolation and selection of ethanol-resistant and osmotolerant yeasts from regional agricultural sources in Mexico. J. Food Process Eng. 32: 775–786 (2009)

    Article  Google Scholar 

  13. Ortiz-Muñiz B, Carvajal-Zarrabal O, Aguilar B, Aguilar-Uscanga MG. Improvement in ethanol production using respiratory deficient phenotype of a wild type yeast Saccharomyces cerevisiae ITV-01. Renew. Energ. 37: 197–201 (2012)

    Article  Google Scholar 

  14. Goldberg I, Er-el Z. The chemostat-an efficient technique for medium optimization. Process Biochem. 16: 2–7 (1981)

    CAS  Google Scholar 

  15. Aguilar-Uscanga MG, Delia ML, Strehaiano P. Brettanomyces bruxellensis: Effect of oxygen on growth and acetic production. Appl. Microbiol. Biot. 61: 157–162 (2003)

    Article  CAS  Google Scholar 

  16. Wang SJ, Zhong JJ. A novel centrifugal impeller bioreactor. II. Oxygen transfer and power consumption. Biotechnol. Bioeng. 51: 520–527 (1996)

    Article  CAS  Google Scholar 

  17. Lange H, Bavouzet JM, Taillandier P, Delorme C. Systematic error and comparison of four methods for assessing the viability of Saccharomyces cerevisiae suspensions. Biotechnol. Tech. 7: 223–228 (1993)

    Article  Google Scholar 

  18. Gogate PR, Beenackers AACM, Pandit AB. Multiple-impeller systems with a special emphasis on bioreactors: A critical review. Biochem. Eng. J. 6: 109–144 (2000)

    Article  CAS  Google Scholar 

  19. García-Ochoa F, Gómez E. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 27: 153–176 (2009)

    Article  Google Scholar 

  20. Aranda-Barradas JS, Delia ML, Riba JP. Kinetic study and modelling of the xylitol production using Candida parapsilosis in oxygen-limited culture conditions. Bioprocess Eng. 22: 219–225 (2000)

    Article  CAS  Google Scholar 

  21. Hahn-Hägerdal B, Jeppsson H, Skoog K, Prior BA. Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb. Tech. 16: 933–943 (1994)

    Article  Google Scholar 

  22. Kastner JR, Eiteman MA, Lee SA. Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis. Appl. Microbiol. Biot. 63: 96–100 (2003)

    Article  CAS  Google Scholar 

  23. De Deken RH. The crabtree effect: A regulatory system in yeast. J. Gen. Microbiol. 44: 149–156 (1966)

    Article  CAS  Google Scholar 

  24. Guiraud JP, Bourgi J, Stervinou M, Claisse M, Galzy P. Isolation of a respiratory deficient Kluyveromyces fragilis mutant for the production of ethanol from Jerusalem artichoke. Biotechnol. Bioeng. 29: 850–858 (1987)

    Article  CAS  Google Scholar 

  25. Lagunas R, Gancedo C. Role of phosphate in the regulation of the Pasteur effect in Saccharomyces cerevisiae. Eur. J. Biochem. 137: 479–483 (1983)

    Article  CAS  Google Scholar 

  26. Wang ZX, Zhuge J, Fang H, Prior BA. Glycerol production by microbial fermentation: A review. Biotechnol. Adv. 19: 201–223 (2001)

    Article  CAS  Google Scholar 

  27. Aguilar-Uscanga MG, Delia ML, Strehaiano P. Nutritional requirements of Brettanomyces bruxellensis: Growth and physiology in batch and chemostat cultures. Can. J. Microbiol. 46: 1046–1050 (2000)

    Article  CAS  Google Scholar 

  28. Yue G, Yu J, Zhang X, Tan T. The influence of nitrogen sources on ethanol production by yeast from concentrated sweet sorghum juice. Biomass Bioenerg. 39: 48–52 (2012)

    Article  CAS  Google Scholar 

  29. Gírio FM, Pelica F, Amaral-Collaço MT. Characterization of xylitol dehydrogenase from Debaryomyces hansenii. Appl. Biochem. Biotech. 56: 79–87 (1996)

    Article  Google Scholar 

  30. Pessoa Jr. A, Mancilha IM, Sato S. Cultivation of C. tropicalis in sugar cane hemicellulose hydrolyzate for microbial protein production. J. Biotechnol. 51: 83–88 (1996)

    Article  CAS  Google Scholar 

  31. Tavares JM, Duarte LC, Amaral-Colaço MT, Gírio FM. Phosphate limitation stress induces xylitol overproduction by Debaryomyces hansenii. FEMS Microbiol. Lett. 171: 115–120 (1999)

    Article  CAS  Google Scholar 

  32. Mendes-Ferreira A, Mendes-Faia A, Leão C. Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry. J. Appl. Microbiol. 97: 540–545 (2004)

    Article  CAS  Google Scholar 

  33. Ortiz-Muñiz B, Carvajal-Zarrabal O, Torrestiana-Sanchez B, Aguilar-Uscanga MG. Kinetic study on ethanol production using Saccharomyces cerevisiae ITV-01 yeast isolated from sugar cane molasses. J. Chem. Technol. Biot. 85: 1361–1367 (2010)

    Article  Google Scholar 

  34. Winkelhausen E, Kuzmanova S. Microbial conversion of D-xylose to xylitol. J. Ferment. Bioeng. 86: 1–14 (1998)

    Article  CAS  Google Scholar 

  35. Velmurugan R, Muthukumar K. Utilization of sugarcane bagasse for bioethanol production: Sono-assisted acid hydrolysis approach. Bioresource Technol. 102: 7119–7123 (2011)

    Article  CAS  Google Scholar 

  36. Cruz JM, Domínguez JM, Domínguez H, Parajó JC. Dimorphic behavior of Debaryomyces hansenii grown in barley bran acid hydrolyzates. Biotechnol. Lett. 22: 605–610 (2000)

    Article  CAS  Google Scholar 

  37. Hill GA, Robinson GW. Morphological behavior of Saccharomyces cerevisiae during continuous fermentation. Biotechnol. Lett. 10: 815–820 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Guadalupe Aguilar-Uscanga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castañón-Rodríguez, J.F., Portilla-Arias, J.A., Aguilar-Uscanga, B.R. et al. Effects of oxygen and nutrients on xylitol and ethanol production in sugarcane bagasse hydrolyzates. Food Sci Biotechnol 24, 1381–1389 (2015). https://doi.org/10.1007/s10068-015-0177-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0177-x

Keywords

Navigation