Skip to main content

Advertisement

Log in

A Comprehensive Review on 1st-Generation Biodiesel Feedstock Palm Oil: Production, Engine Performance, and Exhaust Emissions

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The rapid depletion of conventional fuel reserves and the increase in environmental pollution prompted the search for a sustainable energy solution. Biodiesel is one of the most promising energy substitutes with similar properties as conventional diesel fuel. Surplus availability of palm oil makes it suitable for biodiesel production. Due to the lack of availability of review articles that cover the entire process of palm biodiesel production and its optimum use in diesel engines, the authors were motivated to write this article. Cultivation parameters of palm trees, extraction of oil, and physicochemical properties of palm oil–based biodiesel are explained in this review. The production of palm biodiesel from raw oil can be done through pyrolysis, micro-emulsification, blending, hydro-esterification, and transesterification processes. For high biodiesel yield and less cost of operation, the transesterification method is adopted. The performance and emission parameters of diesel engines that operated on palm biodiesel and its blends are also explained. There is a decrease in brake thermal efficiency and an increase in brake-specific fuel consumption observed with the use of palm biodiesel in diesel engines. A reduction in CO and HC emissions and an increase in NOx emissions are found due to the oxygenating nature of palm biodiesel. This article provides the scientific approach to find out the optimum parameters for palm biodiesel production and its efficient use in compression ignition engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ASTM:

American Society for Testing and Materials

BTE:

Brake thermal efficiency

CI:

Compression ignition

CN:

Cetane number

SVO:

Straight vegetable oil

CPO:

Crude palm oil

BX:

Biodiesel blend level

BP:

Brake power

EASAC:

European Academies’ Science Advisory Council

FFA:

Free fatty acid

BSFC:

Brake-specific fuel consumption

FAME:

Fatty acid methyl ester

RPM:

Rotation per minute

PM:

Particulate matter

SIT:

Self-ignition temperature

MW:

Molecular weight

AN:

Acid number

CP:

Cloud point

SV:

Saponification value

PP:

Pour point

OSI:

Oxidation stability index

FP:

Flash point

MTBE:

Methyl tert-butyl ether

IV:

Iodine value

DI:

Direct injection

HHV:

Higher heating value

IDI:

Indirect injection

WC:

Water cooled

AC:

Air cooled

S:

Stroke

References

  1. Rahpeyma SS, Raheb J (2019) Microalgae biodiesel as a valuable alternative to fossil fuels. Bioenerg Res 12:958–965. https://doi.org/10.1007/s12155-019-10033-6

    Article  CAS  Google Scholar 

  2. Hayyan A, Hashim MA, Hayyan M (2015) Application of a novel catalyst in the esterification of mixed industrial palm oil for biodiesel production. Bioenerg Res 8:459–463. https://doi.org/10.1007/s12155-014-9502-0

    Article  CAS  Google Scholar 

  3. Mekhilef S, Siga S, Saidur R (2011) A review on palm oil biodiesel as a source of renewable fuel. Renew Sust Energ Rev 15:1937–1949. https://doi.org/10.1016/j.rser.2010.12.012

    Article  CAS  Google Scholar 

  4. Akkarawatkhoosith N, Kaewchada A, Ngamcharussrivichai C, Jaree A (2019) Biodiesel production via interesterification of palm oil and ethyl acetate using ion-exchange resin in a packed-bed reactor. Bioenerg Res 13:542–551. https://doi.org/10.1007/s12155-019-10051-4

    Article  CAS  Google Scholar 

  5. Millo F, Debnath BK, Vlachos T, Ciaravino C, Postrioti L, Buitoni G (2015) Effects of different biofuels blends on performance and emissions of an automotive diesel engine. Fuel 159:614–627. https://doi.org/10.1016/j.fuel.2015.06.096

    Article  CAS  Google Scholar 

  6. Shuit SH, Tan SH (2015) Biodiesel production via esterification of palm fatty acid distillate using sulphonated multi-walled carbon nanotubes as a solid acid catalyst: process study, catalyst reusability and kinetic study. Bioenerg Res 8:605–617. https://doi.org/10.1007/s12155-014-9545-2

    Article  CAS  Google Scholar 

  7. Sharma PK, Sharma D, Soni SL, Jhalani A (2019) Characterization of the nonroad modified diesel engine using a novel entropy-VIKOR approach: experimental investigation and numerical simulation. J Energy Res Technol 141(082208):1–10. https://doi.org/10.1115/1.4042717

    Article  CAS  Google Scholar 

  8. Szulczyk KR, Khan MAR (2018) The potential and environmental ramifications of palm biodiesel: evidence from Malaysia. J Clean Prod 203:260–272. https://doi.org/10.1016/j.jclepro.2018.08.241

    Article  Google Scholar 

  9. Ahranjani PE, Kazemeini M, Arpanaei A (2019) Green biodiesel production from various plant oils using nanobiocatalysts under different conditions. Bioenergy Res 13:552–562. https://doi.org/10.1007/s12155-019-10022-9

    Article  CAS  Google Scholar 

  10. Yang Y, Fu T, Bao W, Xie GH (2017) Life cycle analysis of greenhouse gas and PM2.5 emissions from restaurant waste oil used for biodiesel production in China. Bioenergy Res 10:199–207. https://doi.org/10.1007/s12155-016-9792-5

    Article  CAS  Google Scholar 

  11. Jhalani A, Sharma D, Soni SL, Sharma PK, Sharma S (2018) A comprehensive review on water emulsified diesel fuel: chemistry, engine performance and exhaust emissions. Environ Sci Pollut Res 26:4570–4587. https://doi.org/10.1007/s11356-018-3958-y

    Article  CAS  Google Scholar 

  12. Brännström H, Kumar H, Alén R (2018) Current and potential biofuel production from plant oils. Bioenergy Res 11:592–613. https://doi.org/10.1007/s12155-018-9923-2

    Article  CAS  Google Scholar 

  13. Archer SA, Murphy RJ, Steinberger-Wilckens R (2018) Methodological analysis of palm oil biodiesel life cycle studies. Renew Sust Energ Rev 94:694–704. https://doi.org/10.1016/j.rser.2018.05.066

    Article  Google Scholar 

  14. Buchspies B, Kaltschmitt M (2017) The influence of co-product handling methodology on greenhouse gas saving of biofuels in the European context. Bioenergy Res 10:167–182. https://doi.org/10.1007/s12155-016-9790-7

    Article  CAS  Google Scholar 

  15. Samantha S, Sahoo RR (2020) Waste cooking (palm) oil as an economical source of biodiesel production for alternative green fuel and efficient lubricant. Bioenergy Res. https://doi.org/10.1007/s12155-020-10162-3

  16. Azad AK, Rasul M, Khan MMK, Sharma SC, Hazrat M (2015) Prospect of biofuels as an alternative transport fuel in Australia. Renew Sust Energ Rev 43:331–351. https://doi.org/10.1016/j.rser.2014.11.047

    Article  Google Scholar 

  17. Erdiwansyah MR, Sani MSM et al (2019) An overview of higher alcohol and biodiesel as alternative fuels in engines. Energy Rep 5:467–479. https://doi.org/10.1016/j.egyr.2019.04.009

    Article  Google Scholar 

  18. ASTM D7467-20a (2020) Standard specification for diesel fuel oil, biodiesel blends (B6 to B20). ASTM, West Conshohocken, PA. http://www.astm.org/cgi-bin/resolver.cgi?D7467-20a

  19. ASTM D975-20a (2020) Standard specification for diesel fuel oils. ASTM, West Conshohocken, PA. http://www.astm.org/cgi-bin/resolver.cgi?D975-20a

  20. ASTM D6751–20 (2020) Standard test method for biodiesel fuel blend stock (B100) for middle distillate fuels. ASTM, West Conshohocken, PA. http://www.astm.org/cgi-bin/resolver.cgi?D6751-20

  21. Mahlia TMI, Syazmi ZAHS, Mofijur M, Abas AEP, Bilad MR, Ong HC, Silitonga AS (2020) Patent landscape review on biodiesel production: technology updates. Renew Sust Energ Rev 118:109526. https://doi.org/10.1016/j.rser.2019.109526

    Article  CAS  Google Scholar 

  22. Sundus F, Fazal MA, Masjuki HH (2017) Tribology with biodiesel: a study on enhancing biodiesel stability and its fuel properties. Renew Sust Energ Rev 70:399–412. https://doi.org/10.1016/j.rser.2016.11.217

    Article  CAS  Google Scholar 

  23. Soriano AU, Martins LF, de Assumpcao Ventura ES, Gerken de Landa FHT, de Araujo VE, Dutra Faria FR et al (2015) Microbiological aspects of biodiesel and biodiesel/diesel blends biodeterioration. Int Biodeterior Biodegrad 99:102–114. https://doi.org/10.1016/j.ibiod.2014.11.014

    Article  CAS  Google Scholar 

  24. Lim S, Teong LK (2010) Recent trends, opportunities and challenges of biodiesel in Malaysia: an overview. Renew Sust Energ Rev 14:938–954. https://doi.org/10.1016/j.rser.2009.10.027

    Article  CAS  Google Scholar 

  25. Ge JC, Kim HY, Yoon SK, Choi NJ (2019) Optimization of palm oil biodiesel blends and engine operating parameters to improve performance and PM morphology in a common rail direct injection diesel engine. Fuel 260:116326. https://doi.org/10.1016/j.fuel.2019.116326

    Article  CAS  Google Scholar 

  26. Datta A, Mandal BK (2017) A numerical study on the performance, combustion and emission parameters of a compression ignition engine fuelled with diesel, palm stearin biodiesel and alcohol blends. Clean Techn Environ Policy 19:157–173. https://doi.org/10.1007/s10098-016-1202-3

    Article  CAS  Google Scholar 

  27. Yasin MHM, Mamat R, Najafi G, Ali OM, Yusop AF, Ali MH (2017) Potentials of palm oil as new feedstock oil for a global alternative fuel: a review. Renew Sust Energ Rev 79:1034–1049. https://doi.org/10.1016/j.rser.2017.05.186

    Article  Google Scholar 

  28. Chong CT, Ng JH, Ahmad S, Rajoo S (2015) Oxygenated palm biodiesel: ignition, combustion and emissions quantification in a light-duty diesel engine. Energy Convers Manag 101:317–325. https://doi.org/10.1016/j.enconman.2015.05.058

    Article  CAS  Google Scholar 

  29. Gebemariam SN, Marchetti JM (2018) Economics of biodiesel production: review. Energy Convers Manag 168:74–84. https://doi.org/10.1016/j.enconman.2018.05.002

    Article  CAS  Google Scholar 

  30. Chozhavendhan S, Singh MVP, Fransila B, Kumar RP et al (2020) A review on influencing parameters of biodiesel production and purification processes. Curr Opin Green Sustain 1-2:1–6. https://doi.org/10.1016/j.crgsc.2020.04.002

    Article  Google Scholar 

  31. Singh D, Sharma D, Soni SL, Sharma S, Sharma PK, Jhalani A (2020) A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 262:116553. https://doi.org/10.1016/j.fuel.2019.116553

    Article  CAS  Google Scholar 

  32. Vojtisek-Lom M, Pechout M, Dittrich L, Beránek V, Kotek M, Schwarz J, Vodička P, Milcová A, Rossnerová A, Ambrož A, Topinka J (2015) Polycyclic aromatic hydrocarbons (PAH) and their genotoxicity in exhaust emissions from a diesel engine during extended low-load operation on diesel and biodiesel fuels. Atmos Environ 109:9–18. https://doi.org/10.1016/j.atmosenv.2015.02.077

    Article  CAS  Google Scholar 

  33. Mirhashemi FS, Sadrnia H (2020) NOx emissions of compression ignition engines fueled with various biodiesel blends: a review. J Energy Inst 93(1):129–151. https://doi.org/10.1016/j.joei.2019.04.003

    Article  CAS  Google Scholar 

  34. Habibullah M, Masjuki HH, Kalam MA, Rahman SMA, Mofijur M, Mobarak HM, Ashraful AM (2015) Potential of biodiesel as a renewable energy source in Bangladesh. Renew Sust Energ Rev 50:819–834. https://doi.org/10.1016/j.rser.2015.04.149

    Article  CAS  Google Scholar 

  35. Ishola F, Adelekan D, Mamudu A, Adodunrin T, Aworinde A, Olatunji O, Akinlabi (2020) Biodiesel production from palm olein: a sustainable bioresource for Nigeria. Heliyon 6: e03725. https://doi.org/10.1016/j.heliyon.2020.e03725

  36. Kapor NZA, Maniam GP, Rahim MHA, Yusoff MM (2017) Palm fatty acid distillate as a potential source for biodiesel production-a review. J Clean Prod 143:1–9. https://doi.org/10.1016/j.jclepro.2016.12.163

    Article  CAS  Google Scholar 

  37. Fridrihsone A, Romagnoli F, Cabulis U (2018) Life cycle inventory for winter and spring rapeseed production in northern Europe. J Clean Prod 177:79–88. https://doi.org/10.1016/j.jclepro.2017.12.214

    Article  Google Scholar 

  38. Klepacka AM, Florkowski WJ, Revoredo-Giha C (2019) The expansion and changing cropping pattern of rapeseed production and biodiesel manufacturing in Poland. Renew Energy 133:156–165. https://doi.org/10.1016/j.renene.2018.10.015

    Article  Google Scholar 

  39. Datta A, Mandal BK (2016) A comprehensive review of biodiesel as an alternative fuel for compression ignition engine. Renew Sust Energ Rev 57:799–821. https://doi.org/10.1016/j.rser.2015.12.170

    Article  CAS  Google Scholar 

  40. Rezania S, Oryani B, Park J, Hashemi B, Yadav KK, Kwon EE, Hur J, Cho J (2019) Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Convers Manag 201:112155. https://doi.org/10.1016/j.enconman.2019.112155

    Article  CAS  Google Scholar 

  41. Thapa S, Indrawan N, Bhoi PR (2018) An overview on fuel properties and prospects of Jatropha biodiesel as fuel for engines. Environ Technol Innov 9:210–219. https://doi.org/10.1016/j.eti.2017.12.003

    Article  Google Scholar 

  42. Patel RL, Sankhavara CD (2017) Biodiesel production from Karanja oil and its use in diesel engine: a review. Renew Sust Energ Rev 71:464–474. https://doi.org/10.1016/j.rser.2016.12.075

    Article  CAS  Google Scholar 

  43. Mardhiah HH, Ong HC, Masjuki HH, Lim S, Lee HV (2017) A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renew Sust Energ Rev 67:1225–1236. https://doi.org/10.1016/j.rser.2016.09.036

    Article  CAS  Google Scholar 

  44. Mohd Noor CW, Noor MM, Mamat R (2018) Biodiesel as alternate fuel for marine diesel engine applications: a review. Renew Sust Energ Rev 94:127–142. https://doi.org/10.1016/j.rser.2018.05.031

    Article  CAS  Google Scholar 

  45. Adewale P, Dumont M-J, Ngadi M (2015) Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renew Sust Energ Rev 45:574–588. https://doi.org/10.1016/j.rser.2015.02.039

    Article  CAS  Google Scholar 

  46. Wong KY, Han NJ, Chong CT, Lam SS, Chong WT (2019) Biodiesel process intensification through catalytic enhancement and emerging reactor design: a critical review. Renew Sust Energ Rev 116:109399. https://doi.org/10.1016/j.rser.2019.109399

    Article  CAS  Google Scholar 

  47. Knothe G (2011) A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform? Green Chem 13:3048–3065. https://doi.org/10.1039/C0GC00946F

    Article  CAS  Google Scholar 

  48. Arca Bati Z, Altun S (2020) Investigation of the effect of barium-based additive on smoke and NOx emissions of a diesel engine fueled with conventional and biodiesel fuels. Clean Techn Environ Policy 22:1285–1295. https://doi.org/10.1007/s10098-020-01869-0

    Article  CAS  Google Scholar 

  49. Pratiwi S, Juerges N (2020) Review of the impact of renewable energy development on the environment and nature conversion in Southeast Asia. Energy Ecol Environ 5:221–239. https://doi.org/10.1007/s40974-020-00166-2

    Article  Google Scholar 

  50. Palash SM, Masjuki HH, Kalam MA, Atabani AE, Rizwanul Fattah IM, Sanjid A (2015) Biodiesel production, characterization, diesel engine performance, and emission characteristics of methyl esters from Aphanamixis polystachya oil of Bangladesh. Energy Convers Manag 91:149–157. https://doi.org/10.1016/j.enconman.2014.12.009

    Article  CAS  Google Scholar 

  51. Karmakar B, Halder G (2019) Progress and future of biodiesel synthesis: advancement in oil extraction and conversion technologies. Energy Convers Manag 182:307–339. https://doi.org/10.1016/j.enconman.2018.12.066

    Article  CAS  Google Scholar 

  52. Kumar N, Varun CSR (2015) Evaluation of endurance characteristics for a modified diesel engine runs on jatropha biodiesel. Appl Energy 155:253–269. https://doi.org/10.1016/j.apenergy.2015.05.110

    Article  CAS  Google Scholar 

  53. Agarwal AK, Gupta JG, Dhar A (2017) Potential and challenges for large-scale application of biodiesel in automotive sector. Prog Energy Combust Sci 61:113–149. https://doi.org/10.1016/j.pecs.2017.03.002

    Article  Google Scholar 

  54. Tamilselvan P, Nallusamy N, Rajkumar S (2017) A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines. Renew Sust Energ Rev 79:1134–1159. https://doi.org/10.1016/j.rser.2017.05.176

    Article  CAS  Google Scholar 

  55. Ibrahim A (2016) Performance and combustion characteristics of a diesel engine fuelled by butanol–biodiesel–diesel blends. Appl Therm Eng 103:651–659. https://doi.org/10.1016/j.applthermaleng.2016.04.144

    Article  CAS  Google Scholar 

  56. Sakthivel R, Ramesh K, Puenachandran R, Shameer PM (2018) A review on the properties, performance and emission aspects of the third generation biodiesels. Renew Sust Energ Rev 82(3):2970–2992. https://doi.org/10.1016/j.rser.2017.10.037

    Article  CAS  Google Scholar 

  57. Koh MY, Ghazi TIM (2011) A review of biodiesel production from Jatropha curcas L. oil. Renew Sust Energ Rev 15:2240–2251. https://doi.org/10.1016/j.rser.2011.02.013

    Article  CAS  Google Scholar 

  58. Ali OM, Mamat R, Abdullah NR, Abdullah AA (2016) Investigation of blended palm biodiesel-diesel fuel properties with oxygenated additive. ARPN J Eng Appl Sci 11:5289–5293

    CAS  Google Scholar 

  59. Agrawal SK (2006) Internal combustion engines. Revised. New Delhi, INDIA: new age international

  60. Heywood JB (2018) Internal combustion engine fundamentals, Second ed. McGrawHill Book Company, New York

    Google Scholar 

  61. Srivastava DK, Agrawal AK, Datta A, Maurya RK (2018) Advances in internal combustion engine research. Singapore: Springer Nature https://doi.org/10.1007/978-981-10-7575-9

  62. Atadashi IM, Aroua MK, Aziz AA (2010) High quality biodiesel and its diesel engine application: a review. Renew Sust Energ Rev 14(7):1999–2008. https://doi.org/10.1016/j.rser.2010.03.020

    Article  CAS  Google Scholar 

  63. Mat Yasin MH, Mamat R, Najafi G, Ali OM, Yusop AF, Ali MH (2017) Potential of palm oil as new feedstock oil for a global alternate fuel: a review. Renew Sust Energ Rev 79:1034–1049. https://doi.org/10.1016/j.rser.2017.05.186

    Article  Google Scholar 

  64. Barabás I, Todoruţ IA (2011) Biodiesel quality, standards and properties, biodiesel-quality, emissions and by-products, G. Montero (Ed.)

  65. Mahdavi M, Abedini E, Darabi AH (2015) Biodiesel synthesis from oleic acid by nanocatalyst (ZrO2/Al2O3) under high voltage conditions. RSC Adv 5:55027–55032. https://doi.org/10.1039/C5RA07081C

    Article  CAS  Google Scholar 

  66. Singh D, Sharma D, Soni SL, Sharma S, Kumari D (2019) Chemical compositions, properties, and standards for different generation biodiesels: a review. Fuel 253:60–71. https://doi.org/10.1016/j.fuel.2019.04.174

    Article  CAS  Google Scholar 

  67. Takase M, Zhao T, Zhang M, Chen Y, Liu H, Yang L, Wu X (2015) An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties. Renew Sust Energ Rev 43:495–520. https://doi.org/10.1016/j.rser.2014.11.049

    Article  CAS  Google Scholar 

  68. Hajjari M, Tabatabaei M, Mortaza Aghbashlo M et al (2017) A review on the prospects of sustainable biodiesel production: a global scenario with an emphasis on waste-oil biodiesel utilization. Renew Suatain Energy Rev 72:445–464. https://doi.org/10.1016/j.rser.2017.01.034

    Article  CAS  Google Scholar 

  69. Misra RD, Murthy MS (2010) Straight vegetable oils usage in a compression ignition engine—a review. Renew Sust Energ Rev 14:3005–3013. https://doi.org/10.1016/j.rser.2010.06.010

    Article  CAS  Google Scholar 

  70. Lopes R, Cunha RNV, Resende MDV (2012) Bunch yield and genetic parameters of progenies between caiaué and African oil palm. Pesq Agrop Brasileira 47(10):1496–1503. https://doi.org/10.1590/S0100-204X2012001000012

    Article  Google Scholar 

  71. Janaun J, Ellis N (2010) Perspectives on biodiesel as a sustainable fuel. Renew Sust Energ Rev 14:1312–1320. https://doi.org/10.1016/j.rser.2009.12.011

    Article  CAS  Google Scholar 

  72. Gu J, Gao Y, Xu X, Wu J, Yu L, Xin Z, Sun S (2018) Biodiesel production from palm oil and mixed dimethyl/diethyl carbonate with controllable cold flow properties. Fuel 216:781–786. https://doi.org/10.1016/j.fuel.2017.09.081

    Article  CAS  Google Scholar 

  73. Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev 16:2070–2093. https://doi.org/10.1016/j.rser.2012.01.003

    Article  Google Scholar 

  74. Mahmudul HM, Hagos FY, Mamat R, Adam AA, Ishak WFW, Alenezi R (2017) Production, characterization and performance of biodiesel as an alternative fuel in diesel engines- a review. Renew Sust Energ Rev 72:497–509. https://doi.org/10.1016/j.rser.2017.01.001

    Article  CAS  Google Scholar 

  75. Deshmukh S, Kumar R, Bala K (2019) Microalgae biodiesel: a review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Process Technol 191:232–247. https://doi.org/10.1016/j.fuproc.2019.03.013

    Article  CAS  Google Scholar 

  76. Adu-Mensah D, Mei D, Zuo L, Zhang Q, Wang J (2019) A review on partial hydrogation of biodiesel and its influence on fuel properties. Fuel 251:660–668. https://doi.org/10.1016/j.fuel.2019.04.036

    Article  CAS  Google Scholar 

  77. Leevijit T, Prateepchaikul G, Maliwan K, Mompiboon P, Eiadtrong S (2017) Comparative properties and utilization of un-preheated degummed/esterified mixed crude palm oil-diesel blends in an agricultural engine. Renew Energy 101:82–89. https://doi.org/10.1016/j.renene.2016.08.047

    Article  CAS  Google Scholar 

  78. Leevijit T, Prateepchaikul G, Maliwan K, Mompiboon P, Okaew S, Eiadtrong S (2016) Production, properties, and utilization of degummed/esterified mixed crude palm oil-diesel blends in an automotive engine without preheating. Fuel 182:509–516. https://doi.org/10.1016/j.fuel.2016.06.007

    Article  CAS  Google Scholar 

  79. Nyström R, Sadiktsis I, Ahmed TM, Westerholm R, Koegler JH, Blomberg A, Sandström T, Boman C (2016) Physical and chemical properties of RME biodiesel exhaust particles without engine modifications. Fuel 186:261–269. https://doi.org/10.1016/j.fuel.2016.08.062

    Article  CAS  Google Scholar 

  80. Knothe G, Razon LF (2017) Biodiesel fuels. Prog Energy Combust Sci 58:36–59. https://doi.org/10.1016/j.pecs.2016.08.001

    Article  Google Scholar 

  81. Ali OM, Mamat R, Masjuki HH, Abdullah AA (2016) Analysis of blended fuel properties and cycle-to-cycle variation in a diesel engine with a diethyl ether additive. Energy Convers Manag 108:511–519. https://doi.org/10.1016/j.enconman.2015.11.035

    Article  CAS  Google Scholar 

  82. Ali OM, Mamat R, Abdullah NR, Abdullah A (2015) Analysis of blended fuel properties and engine cyclic variations with ethanol additive. J Biobased Mater Bioenergy 9:108–141. https://doi.org/10.1166/jbmb.2015.1505

    Article  CAS  Google Scholar 

  83. Ashok B, Nantagopal K, Chyuan OH et al (2020) Multi-functional fuel additive as a combustion catalyst for diesel and biodiesel in CI engine characteristics. Fuel 278:118250. https://doi.org/10.1016/j.fuel.2020.118250

    Article  CAS  Google Scholar 

  84. Knothe G, Matheaus AC, Ryan TW III (2003) Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82:971–975. https://doi.org/10.1016/S0016-2361(02)00382-4

    Article  CAS  Google Scholar 

  85. Knothe G (2012) Fuel properties of highly polyunsaturated fatty acid methyl esters. Prediction of fuel properties of algal biodiesel. Energy Fuel 26:5265–5273. https://doi.org/10.1021/ef300700v

    Article  CAS  Google Scholar 

  86. Knothe G (2014) A comprehensive evaluation of the cetane numbers of fatty acid methyl esters. Fuel 119:6–13. https://doi.org/10.1016/j.fuel.2013.11.020

    Article  CAS  Google Scholar 

  87. Musthafa MM (2017) Development of performance and emission characteristics on coated diesel engine fuelled by biodiesel with cetane number enhancing additive. Energy 134:234–239. https://doi.org/10.1016/j.energy.2017.06.012

    Article  CAS  Google Scholar 

  88. Ali OM, Mamat R, Abdullah NR, Abdullah AA (2016) Analysis of blended fuel properties and engine performance with palm biodiesel–diesel blended fuel. Renew Energy 86:59–67. https://doi.org/10.1016/j.renene.2015.07.103

    Article  CAS  Google Scholar 

  89. Cano-Gómez JJ, Iglesias-Silva GA (2019) A new correlation for the prediction of kinematic viscosities biodiesel+ higher alcohols blends at atmospheric pressure. Fuel 237:1254–1261. https://doi.org/10.1016/j.fuel.2018.10.038

    Article  CAS  Google Scholar 

  90. Knothe G, Steidley KR (2014) A comprehensive evaluation of the density of fatty acids and esters. J Am Oil Chem Soc 91:1711–1722. https://doi.org/10.1007/s11746-014-2519-x

    Article  CAS  Google Scholar 

  91. Hazrat MA, Rasul MG, Khan MMK (2015) Lubricity improvement of the ultra-low sulfur diesel fuel with the biodiesel. Energy Procedia 75:111–117. https://doi.org/10.1016/j.egypro.2015.07.619

    Article  CAS  Google Scholar 

  92. Chong WWF, Ng JH (2016) An atomic-scale approach for biodiesel boundary lubricity characterization. Int Biodeterior 113:34–43. https://doi.org/10.1016/j.ibiod.2016.03.029

    Article  CAS  Google Scholar 

  93. Sorate KA, Bhale PV (2015) Biodiesel properties and automotive system compatibility issues. Renew Sust Energ Rev 41:777–798. https://doi.org/10.1016/j.rser.2014.08.079

    Article  CAS  Google Scholar 

  94. Knothe G, Steidley KR (2005) Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity. Energy Fuel 19:1192–1200. https://doi.org/10.1021/ef049684c

    Article  CAS  Google Scholar 

  95. Li F, Liu Z, Ni Z, Wang H (2019) Effect of biodiesel components on its lubrication performance. J Mater Res Technol 8:3681–3687. https://doi.org/10.1016/j.jmrt.2019.06.011

    Article  CAS  Google Scholar 

  96. Temizer I, Eskici B (2020) Investigation on the combustion characteristics and lubrication of biodiesel and diesel fuel used in a diesel engine. Fuel 278:118363. https://doi.org/10.1016/j.fuel.2020.118363

    Article  CAS  Google Scholar 

  97. Varatharajan K, Pushparani DS (2018) Screening of antioxidant additives for biodiesel fuels. Renew Sust Energ Rev 82(3):2017–2028. https://doi.org/10.1016/j.rser.2017.07.020

    Article  CAS  Google Scholar 

  98. Xin J, Saka S (2010) Test methods for the determination of biodiesel stability. Biofuels 1:275–289. https://doi.org/10.4155/bfs.10.4

    Article  CAS  Google Scholar 

  99. Knothe G, Dunn RO (2003) Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. J Am Oil Chem Soc 80(10):1021–1026. https://doi.org/10.1007/s11746-003-0814-x

    Article  CAS  Google Scholar 

  100. Frankel EN (2005) Lipid oxidation. 2nd ed. Bridgwater, England: The Oily Press, PJ Barnes & Associates

  101. Lanjekar RD, Deshmukh D (2016) A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties. Renew Sust Energ Rev 54:1401–1411. https://doi.org/10.1016/j.rser.2015.10.034

    Article  CAS  Google Scholar 

  102. Verma P, Sharma MP, Dwivedi G (2016) Evaluation and enhancement of cold flow properties of palm oil and its biodiesel. Energy Rep 2:8–13. https://doi.org/10.1016/j.egyr.2015.12.001

    Article  Google Scholar 

  103. Sierra-Cantor JF, Guerrero-Fajardo CA (2017) Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: a review. Renew Sust Energ Rev 72:774–790. https://doi.org/10.1016/j.rser.2017.01.077

    Article  CAS  Google Scholar 

  104. Tan YD, Lim JS, Alwi SRW (2020) Multi-objective optimal design for integrated palm oil mill complex with consideration of effluent elimination. Energy 202:117767. https://doi.org/10.1016/j.energy.2020.117767

    Article  Google Scholar 

  105. Chan YH, Loh SK, Chin BLF, Yiin CL, How BS, Cheah KW, Wong MK, Loy ACM, Gwee YL, Lo SLY, Yusup S, Lam SS (2020) Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: recent advances and future prospects. Chem Eng 397:125406. https://doi.org/10.1016/j.cej.2020.125406

    Article  CAS  Google Scholar 

  106. Gonzalez-Redin J, Polhill JG, Dawson TP, Hill R, Gordon IJ (2020) Exploring sustainable scenarios in debt-based social–ecological systems: the case for palm oil production in Indonesia. Ambio 49:1530–1548. https://doi.org/10.1007/s13280-019-01286-8

    Article  PubMed  Google Scholar 

  107. Harahap F, Silveira S, Khatiwada D (2019) Cost competitiveness of palm oil biodiesel production in Indonesia. Energy 170:62–72. https://doi.org/10.1016/j.energy.2018.12.115

    Article  CAS  Google Scholar 

  108. Mat SC, Idroas MY, Hamid MF, Zainal ZA (2018) Performance and emissions of straight vegetable oils and its blends as a fuel in diesel engine: a review. Renew Sust Energ Rev 82(1):808–823. https://doi.org/10.1016/j.rser.2017.09.080

    Article  CAS  Google Scholar 

  109. Zahan KA, Kano M (2018) Biodiesel production from palm oil, its by-products, and mill effluent: a review. Energies 11:2132. https://doi.org/10.3390/en11082132

    Article  CAS  Google Scholar 

  110. Tabatabaei M, Aghbashlo M, Dehhaghi M, Panahi HKS, Mollahosseini A, Hosseini M, Soufiyan MM (2019) Reactor technologies for biodiesel production and processing: a review. Prog Energy Combust Sci 74:239–303. https://doi.org/10.1016/j.pecs.2019.06.001

    Article  Google Scholar 

  111. Avhad MR, Marchetti JM (2015) A review on recent advancement in catalytic materials for biodiesel production. Renew Sust Energ Rev 50:696–718. https://doi.org/10.1016/j.rser.2015.05.038

    Article  CAS  Google Scholar 

  112. Charusiri W, Vitidsant T (2017) Response surface methodology optimization of biofuels produced by catalytic pyrolysis of residual palm oil from empty fruit bunch over magnesium oxide. J Chem Eng Jpn 50:727–736. https://doi.org/10.1252/jcej.16we306

    Article  CAS  Google Scholar 

  113. Suresh M, Jawahar CP, Richard A (2018) A review on biodiesel production, combustion, performance, and emission characteristics of non-edible oils in variable compression ratio diesel engine using biodiesel and its blends. Renew Sust Energ Rev 92:38–49. https://doi.org/10.1016/j.rser.2018.04.048

    Article  CAS  Google Scholar 

  114. Verma P, Sharma MP (2016) Review of process parameters for biodiesel production from different feedstocks. Renew Sust Energ Rev 62:1063–1071. https://doi.org/10.1016/j.rser.2016.04.054

    Article  CAS  Google Scholar 

  115. Santos LK, Hatanaka RR, Oliveira JE, Flumignan DL (2019) Production of biodiesel from crude palm oil by a sequential hydrolysis/esterification process using subcritical water. Renew Energy 130:633–640. https://doi.org/10.1016/j.renene.2018.06.102

    Article  CAS  Google Scholar 

  116. Pourzolfaghar H, Abnisa F, Daud WMAW, Aroua MK (2016) A review of the enzymatic hydroesterification process for biodiesel production. Renew Sust Energ Rev 61:245–257. https://doi.org/10.1016/j.rser.2016.03.048

    Article  CAS  Google Scholar 

  117. Kuss VV, Kuss AV, Rosa RG et al (2015) Potential of biodiesel production from palm oil at Brazilian Amazon. Renew Sust Energ Rev 50:1013–1020. https://doi.org/10.1016/j.rser.2015.05.055

    Article  Google Scholar 

  118. Encarnação APG (2008) Biodiesel generation through the transesterification and hydroesterification processes, an economic evaluation. Rio de Janeiro: UFRJ, Escola de Química p. 1–144

  119. Lima LL (2007) Biodiesel production from the hydroesterification of castor oil (Ricinus comunnis L.) and soybean (Glycine max). Rio de Janeiro: UFRJ, Escola de Química p. 206

  120. Ullah Z, Khan AS, Muhammad N, Ullah R, Alqahtani AS, Shah SN, Ghanem OB, Bustam MA, Man Z (2018) A review on ionic liquids as perspective catalysts in transesterification of different feedstock oil into biodiesel. J Mol Liq 266:673–686. https://doi.org/10.1016/j.molliq.2018.06.024

    Article  CAS  Google Scholar 

  121. Sharma A, Kodgire P, Kachhwaha SS (2020) Investigation of ultrasound-assisted KOH and CaO catalyzed transesterification for biodiesel production from waste cotton-seed cooking oil: process optimization and conversion rate evaluation. J Clean Prod 259:120982. https://doi.org/10.1016/j.jclepro.2020.120982

    Article  CAS  Google Scholar 

  122. Nayak SN, Bhasin CP, Nayak MG (2019) A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems. Renew Energy 143:1366–1387. https://doi.org/10.1016/j.renene.2019.05.056

    Article  CAS  Google Scholar 

  123. Chen GY, Shan R, Shi JF, Yan BB (2015) Transesterification of palm oil to biodiesel using rice husk ash-based catalysts. Fuel Process Technol 133:8–13. https://doi.org/10.1016/j.fuproc.2015.01.005

    Article  CAS  Google Scholar 

  124. Ambat I, Srivastava V, Sillanpää M (2018) Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew Sust Energ Rev 90:356–369. https://doi.org/10.1016/j.rser.2018.03.069

    Article  CAS  Google Scholar 

  125. Luo J, Fang Z, Smith RL Jr (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust Sci 41:56–93. https://doi.org/10.1016/j.pecs.2013.11.001

    Article  Google Scholar 

  126. Suppalakpanya K, Ratanawilai SB, Tongurai C (2010) Production of ethyl ester from esterified crude palm oil by microwave with dry washing by bleaching earth. Appl Energy 87(7):2356–2359. https://doi.org/10.1016/j.apenergy.2009.12.006

    Article  CAS  Google Scholar 

  127. Kansedo J, Lee KT, Bhatia S (2009) Biodiesel production from palm oil via heterogeneous transesterification. Biomass Bioenergy 33(2):271–276. https://doi.org/10.1016/j.biombioe.2008.05.011

    Article  CAS  Google Scholar 

  128. Aderemi BO, Hameed BH (2009) Alum as a heterogeneous catalyst for the transesterification of palm oil. Appl Catal A Gen 370(1–2):54–58. https://doi.org/10.1016/j.apcata.2009.09.020

    Article  CAS  Google Scholar 

  129. Melero JA, Bautista LF, Morales G, Iglesias J, Sánchez-Vázquez R (2010) Biodiesel production from crude palm oil using sulfonic acid-modified mesostructured catalysts. Chem Eng J 161(3):323–331. https://doi.org/10.1016/j.cej.2009.12.037

    Article  CAS  Google Scholar 

  130. Gao LJ, Teng GY, Xiao GM, Wei RP (2010) Biodiesel from palm oil via loading KF/Ca–Al hydrotalcite catalyst. Biomass Bioenergy 34(9):1283–1288. https://doi.org/10.1016/j.biombioe.2010.03.023

    Article  CAS  Google Scholar 

  131. Hameed BH, Lai LF, Chin LH (2009) Production of biodiesel from palm oil (Elaeis guineensis) using heterogeneous catalyst: an optimized process. Fuel Process Technol 90(4):606–610. https://doi.org/10.1016/j.fuproc.2008.12.014

    Article  CAS  Google Scholar 

  132. Trakarnpruk W, Porntangjitlikit S (2008) Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties. Renew Energy 33(7):1558–1563. https://doi.org/10.1016/j.renene.2007.08.003

    Article  CAS  Google Scholar 

  133. Noiroj K, Intarapong P, Luengnaruemitchai A, Jai-In S (2009) A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renew Energy 34(4):1145–1150. https://doi.org/10.1016/j.renene.2008.06.015

    Article  CAS  Google Scholar 

  134. Mootabadi H, Salamatinia B, Bhatia S, Abdullah AZ (2010) Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel 89(8):1818–1825. https://doi.org/10.1016/j.fuel.2009.12.023

    Article  CAS  Google Scholar 

  135. Talukder MMR, Wu CJ, Van Nguyen TB, Fen NM, Melis YLS (2009) Novozym 435 for production of biodiesel from unrefined palm oil: comparison of methanolysis methods. J Mol Catal B Enzym 60(3–4):106–112. https://doi.org/10.1016/j.molcatb.2009.04.004

    Article  CAS  Google Scholar 

  136. Tan KT, Gui MM, Lee KT, Mohamed AR (2010) An optimized study of methanol and ethanol in supercritical alcohol technology for biodiesel production. J Supercrit Fluids 53(1–3):82–87. https://doi.org/10.1016/j.supflu.2009.12.017

    Article  CAS  Google Scholar 

  137. Bi Z, He BB (2016) Phospholipid transesterification in sub−/super-critical methanol with the presence of free fatty acids. Fuel 166:461–466. https://doi.org/10.1016/j.fuel.2015.11.009

    Article  CAS  Google Scholar 

  138. Aboelazayem O, Gadalla M, Saha B (2018) Biodiesel production from waste cooking oil via supercritical methanol: optimisation and reactor simulation. Renew Energy 124:144–154. https://doi.org/10.1016/j.renene.2017.06.076

    Article  CAS  Google Scholar 

  139. Sakdasri W, Sawangkeaw R, Ngamprasertsith S (2018) Techno-economic analysis of biodiesel production from palm oil with supercritical methanol at a low molar ratio. Energy 152:144–153. https://doi.org/10.1016/j.energy.2018.03.125

    Article  CAS  Google Scholar 

  140. Martinovic FL, Kiss FE, Micic RD, Simikić MÐ, Tomić MD (2018) Comparative techno-economic analysis of single-step and two-step biodiesel production with supercritical methanol based on process simulation. Chem Eng Res Des 132:751–765. https://doi.org/10.1016/j.cherd.2018.02.024

    Article  CAS  Google Scholar 

  141. Tang ZE, Lim S, Pang YL, Ong HC, Lee KT (2018) Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: state of the art and fundamental review. Renew Sust Energ Rev 92:235–253. https://doi.org/10.1016/j.rser.2018.04.056

    Article  CAS  Google Scholar 

  142. Nalgundwar A, Paul B, Sharma SK (2016) Comparison of performance and emissions characteristics of DI CI engine fueled with dual biodiesel blends of palm and jatropha. Fuel 173:172–179. https://doi.org/10.1016/j.fuel.2016.01.022

    Article  CAS  Google Scholar 

  143. Abedin MJ, Masjuki HH, Kalam MA, Sanjid A, Rahman SMA, Fattah IMR (2014) Performance, emissions, and heat losses of palm and jatropha biodiesel blends in a diesel engine. Ind Crop Prod 59:96–104. https://doi.org/10.1016/j.indcrop.2014.05.001

    Article  CAS  Google Scholar 

  144. Gulzar M, Masjuki HH, Varman M, Kalam MA, Zulkifli NWM, Mufti RA, Liaquat AM, Zahid R, Arslan A (2016) Effects of biodiesel blends on lubricating oil degradation and piston assembly energy losses. Energy 111:713–721. https://doi.org/10.1016/j.energy.2016.05.132

    Article  CAS  Google Scholar 

  145. Mofijur M, Masjuki HH, Kalam MA, Atabani AE, Fattah IMR, Mobarak HM (2014) Comparative evaluation of performance and emission characteristics of Moringa oleifera and palm oil based biodiesel in a diesel engine. Ind Crop Prod 53:78–84. https://doi.org/10.1016/j.indcrop.2013.12.011

    Article  CAS  Google Scholar 

  146. Verma P, Sharma MP (2015) Performance and emission characteristics of biodiesel fuelled diesel engines. Int J Renew Energy Res (IJRER) 5(1):245–250

    Google Scholar 

  147. Bello E, Oguntuase B, Osasona A, Mohammed T (2015) Characterization and engine testing of palm kernel oil biodiesel. Eur J Eng Technol 3:1–14

    Google Scholar 

  148. Liaquat AM, Masjuki HH, Kalam MA, Fazal MA, Khan AF, Fayaz H, Varman M (2013) Impact of palm biodiesel blend on injector deposit formation. Appl Energy 111:882–893. https://doi.org/10.1016/j.apenergy.2013.06.036

    Article  CAS  Google Scholar 

  149. Moser BR (2011) Influence of extended storage on fuel properties of methyl esters prepared from canola, palm, soybean and sunflower oils. Renew Energy 36:1221–1226. https://doi.org/10.1016/j.renene.2010.10.009

    Article  CAS  Google Scholar 

  150. Jakeria MR, Fazal MA, Haseeb ASMA (2014) Influence of different factors on the stability of biodiesel: a review. Renew Sust Energ Rev 30:154–163. https://doi.org/10.1016/j.rser.2013.09.024

    Article  CAS  Google Scholar 

  151. Ng JH, Ng HK, Gan S (2012) Characterization of engine-out responses from a light duty diesel engine fuelled with palm methyl ester (PME). Appl Energy 90:58–67. https://doi.org/10.1016/j.apenergy.2011.01.028

    Article  CAS  Google Scholar 

  152. Mofijur M, Masjuki HH, Kalam MA, Atabani AE, Shahabuddin M, Palash SM, Hazrat MA (2013) Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: a review. Renew Sust Energ Rev 28:441–455. https://doi.org/10.1016/j.rser.2013.07.051

    Article  CAS  Google Scholar 

  153. Imran A, Varman M, Masjuki HH, Kalam MA (2013) Review on alcohol fumigation on diesel engine: a viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission. Renew Sust Energ Rev 26:739–751. https://doi.org/10.1016/j.rser.2013.05.070

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the researchers who performed the experiment and evaluated various parameters associated with palm oil, palm biodiesel, and its blends. The information provided by the various researchers is the base of this review article. We also thank the editor and anonymous reviewers who helped to improve the quality of the article with their constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

Digambar Singh: writing—original draft, writing—review and editing, conceptualization, formal analysis

Dilip Sharma: supervision

S. L. Soni: supervision

Chandrapal Singh Inda: validation, data curation, resources

Sumit Sharma: resources

Pushpendra Kumar Sharma: formal analysis

Amit Jhalani: visualization

Corresponding author

Correspondence to Digambar Singh.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 15.4 kb)

ESM 2

(DOCX 15.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Sharma, D., Soni, S.L. et al. A Comprehensive Review on 1st-Generation Biodiesel Feedstock Palm Oil: Production, Engine Performance, and Exhaust Emissions. Bioenerg. Res. 14, 1–22 (2021). https://doi.org/10.1007/s12155-020-10171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10171-2

Keywords

Navigation