Skip to main content

Advertisement

Log in

The Influence of Co-product Handling Methodology on Greenhouse Gas Savings of Biofuels in the European Context

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The handling of multi-output systems presents a crucial aspect of greenhouse gas (GHG) emission calculation as well as the certification of biofuels, and finding a robust and applicable method that accounts for distinctive characteristics of and benefits generated by all products is a challenge. In this work, GHG emission savings of 11 biofuel production concepts are assessed and the implications of methodological assumptions are discussed by applying the methodology defined by the Renewable Energy Directive (RED), allocation based on physical parameters, two hybrid approaches, as well as six variants of substitution. GHG emission savings according to RED methodology range from 35 to 57 %. Sugar beet-based ethanol shows highest savings. Results reveal that GHG savings according to the RED methodology present, in sum, a relatively good approximation of emission savings occurring due to substitution effects under given assumptions. An introduction of credits for products that are barely or not considered by the RED methodology due to allocation based on the lower heating value (LHV), i.e. fertilizers and wet feed co-products, reduces the difference between RED results and results based on substitution. If displacement mechanisms are considered by substitution, sugar beet-based ethanol, ethanol production by wet milling of wheat and sunflower biodiesel result in highest emission savings under given assumptions if oil that needs to be supplied due to occurring displacement mechanisms stems from rapeseed. The implementation of a method that supports concepts with high emission saving potential, e.g. allocation based the lower heating value of dry material, could promote emission reductions from biofuel provision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. (2009) Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC

  2. Guinée JB, Heijungs R, Huppes G, et al. (2011) Life cycle assessment: past, present, and future. Environ Sci Technol 45(1):90–96. doi:10.1021/es101316v

    Article  PubMed  Google Scholar 

  3. Haes U, Helias A (1993) Applications of life cycle assessment: expectations, drawbacks and perspectives. J Clean Prod 1(3–4):131–137. doi:10.1016/0959-6526(93)90002-S

    Article  Google Scholar 

  4. Whittaker C (2015) Life cycle assessment of biofuels in the European Renewable Energy Directive. A combination of approaches? Green Gas Meas Manag 4(2–4):124–138. doi:10.1080/20430779.2014.998442

    Google Scholar 

  5. D’Avino L, Dainelli R, Lazzeri L, et al. (2015) The role of co-products in biorefinery sustainability. Energy allocation versus substitution method in rapeseed and carinata biodiesel chains. J Clean Prod 94:108–115. doi:10.1016/j.jclepro.2015.01.088

    Article  Google Scholar 

  6. Luo L, van der Voet E, Huppes G, et al. (2009) Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol. Int J Life Cycle Ass 14(6):529–539. doi:10.1007/s11367-009-0112-6

    Article  CAS  Google Scholar 

  7. Gnansounou E, Dauriat A, Panichelli L, et al. (2008) Energy and greenhouse gas balances of biofuels: biases induced by LCA modelling choices. J Sci Ind Res India 67(11):885–897

    CAS  Google Scholar 

  8. Zaimes GG, Khanna V (2014) The role of allocation and coproducts in environmental evaluation of microalgal biofuels. How important? Sustain Energy Technol Assess 7:247–256. doi:10.1016/j.seta.2014.01.011

    Article  Google Scholar 

  9. Canter CE, Dunn JB, Han J, et al. (2016) Policy implications of allocation methods in the life cycle analysis of integrated corn and corn stover ethanol production. Bioenerg Res 9(1):77–87. doi:10.1007/s12155-015-9664-4

    Article  CAS  Google Scholar 

  10. Cherubini F, Strømman AH, Ulgiati S (2011) Influence of allocation methods on the environmental performance of biorefinery products—a case study. Resour Conserv Rec 55(11):1070–1077. doi:10.1016/j.resconrec.2011.06.001

    Article  Google Scholar 

  11. Sandin G, Røyne F, Berlin J, et al. (2015) Allocation in LCAs of biorefinery products: implications for results and decision-making. J Clean Prod 93:213–221. doi:10.1016/j.jclepro.2015.01.013

    Article  Google Scholar 

  12. (2015) Directive 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources

  13. Deutsches Institut für Normung e. V. (DIN) (2006) Environmental management—life cycle assessment—requirements and guidelines (ISO 14044:2006); German and English version EN ISO 14044:2006

  14. Neeft J, Buck St, Gerlagh T et al. (2012) Harmonized calculations of biofuel greenhouse gas emissions in Europe. Version 4c

  15. Buchspies B, Kaltschmitt M (2016) Life cycle assessment of bioethanol from wheat and sugar beet discussing environmental impacts of multiple concepts of co-product processing in the context of the European Renewable Energy Directive. Biofuels:1–24. doi:10.1080/17597269.2015.1122472

  16. CropEnergies AG (2014) Data on bioethanol production provided by a major European ethanol producer

  17. Belau T, Döhler H, Eckel H et al. (2012) Energiepflanzen. Daten für die Planung des Energiepflanzenanbaus, 2. Aufl. KTBL-Datensammlung. KTBL, Darmstadt

  18. (2011) Zukunftsweisender Ressourcenschutz durch die Nutzung von Reststoffen aus alkoholischer Gärung. Abschlussbericht, Hamburg, Leipzig

  19. Kuchta K, Voss T, Wach W et al. (2011) Energie aus Biomasse–Neue Wege zur integrierten Bioraffinerie – „BIORAFFINERIE2021“. Abschlussbericht

  20. Vogt R (2008) Basisdaten zu THG Bilanzen für Biogas-Prozessketten und Erstellung neuer THG-Bilanzen. Kurzdokumentation, Heidelberg

  21. Jungbluth N, Dinkel F, Doka G et al. (2007) Life cycle inventories of bioenergy. Data v2.0 (2007). ecoinvent report No. 17, Zürich

  22. Hammerschlag R (2006) Ethanol’s energy return on investment. A survey of the literature 1990–present. Environ Sci Technol 40(6):1744–1750. doi:10.1021/es052024h

    Article  CAS  PubMed  Google Scholar 

  23. van Zeist WJ, Marinussen M, Broekema R et al. (2012) LCI data for the calculation tool Feedprint for greenhouse gas emissions of feed production and utilization. Wet Milling Industry, Gouda

  24. De Klein C, Novoa RS, Ogle S et al. (2006) 2006 IPCC Guidelines for national greenhouse gas inventories: volume 4—agriculture, forestry and other land use. Chapter 11—N2O emissions from managed soils and CO2 emissions from lime and urea application

  25. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV) (2010) Die deutsche Landwirtschaft Leistungen in Daten und Fakten. Ausgabe 2010, Berlin

  26. Food and Agriculture Organization of the United Nations (FAO) (2014) FAOSTAT. Arable land as % of agriculture area. http://faostat.fao.org/

  27. Flach B, Lieberz S, Randon M et al. (2015) EU biofuels annual 2015, The Hague

  28. Stucki M, Jungbluth N, Leuenberger M (2011) Life cycle assessment of biogas production from different substrates, Uster

  29. Jungbluth N, Frischknecht R, Orthlieb A et al. (2013) Aktualisierung und Ergänzung der naturemade Kennwertmodelle: Ökobilanzen für die Prüfung des globalen Kriteriums, Uster

  30. Kaltschmitt M, Hartmann H, Hofbauer H (2009) Energie aus Biomasse. Grundlagen, Techniken und Verfahren, 2nd edn. Springer, Berlin Heidelberg

    Book  Google Scholar 

  31. Lee S, Speight JG, Loyalka SK (2015) Handbook of alternative fuel technologies. In: Green chemistry and chemical engineering, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  32. Fehrenbach H, Giegrich J, Gärtner S et al. (2007) Greenhouse gas balances for the German biofuels quota legislation. Methodological guidance and default values, Heidelberg

  33. Sundstøl F (1993) Energy systems for ruminants. Iceland agriculture. Science 7:11–19

    Google Scholar 

  34. Plevin RJ, Delucchi MA, Creutzig F (2014) Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J Ind Ecol 18(1):73–83. doi:10.1111/jiec.12074

    Article  Google Scholar 

  35. Weidema BP (2000) Avoiding Co-product allocation in life-cycle assessment. J Ind Ecol 4(3):11–33. doi:10.1162/108819800300106366

    Article  CAS  Google Scholar 

  36. Dale BE, Kim S (2014) Can the predictions of consequential life cycle assessment be tested in the real world? Comment on “using attributional life cycle assessment to estimate climate-change mitigation. J Ind Ecol 18(3):466–467. doi:10.1111/jiec.12151

    Article  Google Scholar 

  37. Hertwich E (2014) Understanding the climate mitigation benefits of product systems. Comment on “using attributional life cycle assessment to estimate climate-change mitigation. J Ind Ecol 18(3):464–465. doi:10.1111/jiec.12150

    Article  Google Scholar 

  38. Fertilizers Europe (2012) EU fertilizer market. Key graphs

  39. (2015) World fertilizer trends and outlook to 2018, Rome

  40. Rettenmaier N, Reinhard G, Gärtner S (2008) Green house gas balances for VERBIO ethanol as per the German Biomass Sustainability Ordinance (BioNachV). Final report, Heidelberg

  41. Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 12(3):242–257. doi:10.1002/elsc.201100085

    Article  Google Scholar 

  42. Schröder JJ, Smit AL, Cordell D, et al. (2011) Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84(6):822–831. doi:10.1016/j.chemosphere.2011.01.065

    Article  PubMed  Google Scholar 

  43. Bouwman AF, Beusen AHW, Billen G (2009) Human alteration of the global nitrogen and phosphorus soil balances for the period 1970-2050. Global Biogeochem Cy 23(4). doi:10.1029/2009gb003576

  44. Blake L, Mercik S, Koerschens M, et al. (1999) Potassium content in soil, uptake in plants and the potassium balance in three European long-term field experiments. Plant Soil 216(1/2):1–14. doi:10.1023/a:1004730023746

    Article  CAS  Google Scholar 

  45. (2004) Phosphor in Böden. Standortbestimmung Schweiz. Schriftenreihe Umwelt Nr. 368, Bern

  46. Smil V (2000) Phosphorus in the environment. Natural flows and human interferences. Annu Rev Energy Environ 25(1):53–88. doi:10.1146/annurev.energy.25.1.53

    Article  Google Scholar 

  47. Ojekanmi A, Ige D, Hao X, et al. (2011) Phosphorus mobility in a soil with long term manure application. JAS 3(3). doi:10.5539/jas.v3n3p25

  48. Padua AA de, Azania M, Alberto C et al. (2011) Herbicidal potentiality of fusel oil. In: Andreas Kortekamp (ed) Herbicides and environment, Rijeka, pp 735–746

  49. Hirschberg HG (2014) Handbuch Verfahrenstechnik und Anlagenbau. Chemie, Technik und Wirtschaftlichkeit, Softcover reprint of the original, 1st edn. 1999. Springer Berlin, Berlin

  50. Ciriminna R, Della Pina C, Rossi M, et al. (2014) Understanding the glycerol market. Eur J Lipid Sci Technol 116(10):1432–1439. doi:10.1002/ejlt.201400229

    Article  CAS  Google Scholar 

  51. Green Chemical (2014) Glycerin market review for 2013 and outlook for 2014

  52. Lywood W, Pinkey J, Cockerill S (2009) Impact of protein concentrate coproducts on net land requirement for European biofuel production. GCB Bioenergy 1(5):346–359. doi:10.1111/j.1757-1707.2009.01026.x

    Article  CAS  Google Scholar 

  53. Weidema BP (2003) Market information in life cycle assessment. Environmental Project No. 863 2003

  54. Dalgaard R, Schmidt J, Halberg N, et al. (2008) LCA of soybean meal. Int J Life Cycle Ass 13(3):240–254. doi:10.1065/lca2007.06.342

    Article  CAS  Google Scholar 

  55. Reinhard J, Zah R (2009) Global environmental consequences of increased biodiesel consumption in Switzerland. Consequential life cycle assessment. J Clean Prod 17:S46–S56. doi:10.1016/j.jclepro.2009.05.003

    Article  CAS  Google Scholar 

  56. European Commission (2015) Oilseeds and protein crops. Balance sheets

  57. Vogel S (2011) Brazil and grain supply to the EU. Facts, figures, challenges. EU-Brazil trade perspectives on agriculture in the context of the EU-MERCOSUR association agreement, Brussels

  58. European Feed Manufacturers Federation (fefac) (2013) Feed & food. Statistical yearbook 2013, Brussels

  59. U.S. Department of Agriculture (USDA), U.S. Department of Agriculture Foreign Agricultural Service World production of major vegetable oils from 2000/2001 to 2014/2015, by oil type (in million metric tons). http://www.statista.com/statistics/263933/production-of-vegetable-oils-worldwide-since-2000/. Accessed 06 Jan 2016

  60. IndexMundi (2016) Soybean oil monthly price—US dollars per metric ton. http://www.indexmundi.com/commodities/?commodity=soybean-oil&months=60. Accessed 07 Jan 2016

  61. IndexMundi (2016) Palm oil monthly price—US dollars per metric ton. http://www.indexmundi.com/commodities/?commodity=palm-oil&months=60. Accessed 07 Jan 2016

  62. Verband der ölsaatverarbeitenden Industrie in Deutschland e.V. (OVID) (2016) Was füttern die deutschen Bauern? http://www.ovid-verband.de/unsere-branche/daten-und-grafiken/oelschrote. Accessed 01 Jun 2016

  63. IndexMundi (2016) Rapeseed oil monthly price—US dollars per metric ton. http://www.indexmundi.com/commodities/?commodity=rapeseed-oil&months=60. Accessed 07 Jan 2016

  64. Bundesverband der Stärkekartoffelerzeuger (BVS) (2013) Daten und Fakten 2012, Berlin

  65. ecoinvent Centre (2014) ecoinvent data v3.1, Dübendorf

  66. Nemecek T, Charles R, Alföldi T et al. (2005) Ökobilanzierung von Anbausystemen im schweizerischen Acker-und Futterbau. Agroscope FAL Reckenholz Zürich, Schriftenreihe der FAL, Zürich

  67. Mullins KA, Griffin WM, Matthews HS (2011) Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels. Environ Sci Technol 45(1):132–138. doi:10.1021/es1024993

    Article  CAS  PubMed  Google Scholar 

  68. Muñoz I, Flury K, Jungbluth N, et al. (2014) Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks. Int J Life Cycle Ass 19(1):109–119. doi:10.1007/s11367-013-0613-1

    Article  Google Scholar 

Download references

Acknowledgments

We thank all anonymous reviewers that helped to improve this work significantly by giving constructive advices and comments. This work is part of a research project funded by CropEnergies AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Buchspies.

Ethics declarations

Competing Interests

CropEnergies AG provided funding for a research project that assesses the environmental impacts of biofuel production. Data was provided for this purpose. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

Electronic Supplementary Material

ESM 1

(DOCX 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchspies, B., Kaltschmitt, M. The Influence of Co-product Handling Methodology on Greenhouse Gas Savings of Biofuels in the European Context. Bioenerg. Res. 10, 167–182 (2017). https://doi.org/10.1007/s12155-016-9790-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9790-7

Keywords

Navigation