Skip to main content
Log in

Three-Year Soil Carbon and Nitrogen Responses to Sugarcane Straw Management

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Green harvest sugarcane management has increased soil organic C and N stocks over time. However, emerging sugarcane straw removal to meet increasing bioenergy demands has raised concerns about soil C and N depletions. Thus, we conducted a field study in southeast Brazil over nearly three years (1100 days) for assessing soil C and N responses to increasing sugarcane straw removal rates. In order to detect the C input as a function of the different amounts of straw over three years, a field simulation was performed, where the original soil layer (0–0.30 m) was replaced by another from an adjacent area with low total C and δ13C. The treatments tested were as follows: (i) 0 Mg ha−1 year−1 (i.e., 100% removal), (ii) 3.5 Mg ha−1 year−1 (i.e., 75% removal), (iii) 7.0 Mg ha−1 year−1 (i.e., 50% removal), (iv) 14.0 Mg ha−1 year−1 (i.e., no removal), and (v) 21.0 Mg ha−1 year−1 (i.e., no removal + extra 50% of the straw left on the field). The results showed that sugarcane straw removal affected the soil C and total N pools. In the first 45 days of straw decomposition, a small but important straw-derived C portion enters into the soil as dissolved organic carbon (DOC). The lower the straw removal rate, the higher was straw-derived DOC content found into the soil, down to 0.50 m depth. After 3 years of management, keeping sugarcane straw on soil surface significantly increased C and N stocks within surface soil layer (0–0.025 m). Our findings suggest that under no straw removal management (i.e., 14 Mg ha−1), approximately 364 kg ha−1 of C and 23 kg ha−1 of N are annually stored into this low-C soil. The contribution of the straw-derived C (C-C4) to the total soil C increases over time, which accounted for about 60% under no straw removal rate. The greatest contribution of the C storage preferentially occurs into the fraction of organic matter (< 0.53 μm) associated with soil clay minerals. We concluded that indiscriminate sugarcane straw removal to produce cellulosic ethanol or bioelectricity depletes soil C stocks and reduces N cycling in sugarcane fields, impairing environmental gains associated with bioenergy production. Therefore, this information, linked with other agronomic and environmental issues, should be taken into account towards a more sustainable straw removal management for bioenergy production in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Food and Agriculture Organization of the United Nations—FAO (2017) Sugarcane production. http://www.fao.org/faostat/en/#data. Accessed 02.02.2017

  2. Companhia Nacional de Abastecimento—Conab (2017) Acompanhamento da safra brasileira de cana-de-açúcar. v. 4—Safra 2017/18, n. 1, Primeiro Levantamento, Brasília. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_04_20_14_04_31_boletim_cana_portugues_-_1o_lev_-_17-18.pdf. Accessed 29.05.17

  3. União da Indústria da Cana-de-açúcar—Unica (2017) Área de cana-de-açúcar com colheita mecanizada. http://www.unica.com.br/. Accessed 02.02.2017

  4. Leal MRLV, Galdos MV, Scarpare FV, Seabra JEA, Walter A, Oliveira COF (2013) Sugarcane straw availability, quality, recovery and energy use: a literature review. Biomass Bioenergy 53:11–19. https://doi.org/10.1016/j.biombioe.2013.03.007

    Article  Google Scholar 

  5. Cerri CC, Galdos MV, Maia SMF, Bernoux M, Feigl BJ, Powlson D, Cerri CEP (2011) Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data. Eur J Soil Sci 62(1):23–28. https://doi.org/10.1111/j.1365-2389.2010.01315.x

    Article  CAS  Google Scholar 

  6. Thorburn PJ, Meier EA, Collins K, Robertson FA (2012) Changes in soil carbon sequestration, fractionation and soil fertility in response to sugarcane residue retention are site-specific. Soil Tillage Res 120:99–111. https://doi.org/10.1016/j.still.2011.11.009

    Article  Google Scholar 

  7. Meier EA, Thorburn PJ (2016) Long term sugarcane crop residue retention offers limited potential to reduce nitrogen fertilizer rates in Australian wet tropical environments. Front Plant Sci 7:1017. https://doi.org/10.3389/fpls.2016.01017

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carvalho JLN, Hudiburg TW, Franco HCJ, DeLucia EH (2017) Contribution of above- and belowground bioenergy crop residues to soil carbon. Glob Change Biol Bioenergy 9(8):1333–1343. https://doi.org/10.1111/gcbb.12411

    Article  CAS  Google Scholar 

  9. Cherubin MR, Oliveira DMS, Feigl B, Pimentel LG, Lisboa IP, Gmach MR, Varanda LL, Morais MC, Satiro LS, Popin GV, Paiva SR, Santos AKB, Vasconcelos ALS, Melo PLA, Cerri CEP, Cerri CC (2018) Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Sci Agric 75(3):255–272. https://doi.org/10.1590/1678-992X-2016-0459

  10. Oliveira DMS, Williams S, Cerri CEP, Paustian K (2017) Predicting soil C changes over sugarcane expansion in Brazil using the DayCent model. Glob Change Biol Bioenergy 9(9):1436–1446. https://doi.org/10.1111/gcbb.12427

    Article  CAS  Google Scholar 

  11. Federative Republic of Brazil (2015) Intended nationally determined contribution, towards achieving the objective of the United Nations Framework Convention on Climate Change; 2015. http://www.unfccc.int. Accessed 02.02.2017

  12. United Nations Conference on Trade and Development (2016) Second generation biofuel markets: state of play, trade and developing country perspectives. United Nations Publication. 69 p. http://unctad.org/en/PublicationsLibrary/ditcted2015d8_en.pdf. Accessed 02.05.2016

  13. Khatiwada D, Leduc S, Silveira S, McCallum I (2016) Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil. Renew Energy 85:371–386. https://doi.org/10.1016/j.renene.2015.06.009

    Article  CAS  Google Scholar 

  14. Carvalho JLN, Nogueirol RC, Menandro LMS, Bordonal RO, Borges CD, Cantarella H, Franco HCJ (2016) Agronomic and environmental implications of sugarcane straw removal: a major review. Glob Change Biol Bioenergy 9(7):1181–1195. https://doi.org/10.1111/gcbb.12410

    Article  Google Scholar 

  15. Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lubreras JF, Coelho MR, Almeida JA, Cunha TJF, Oliveira JB (ed) (2013) Sistema Brasileiro de Classificação de Solos. 3. ed. rev. ampl. Brasília: Embrapa, 353 p

  16. Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR (Ed.) Methods of Soil Analysis: Chemical and Microbiological Properties. Am Soc Agron, 40p

  17. Van Soest PJ, Robertson JB, Lewis B (1991) A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci Lancaster 74(10):3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  18. Kolka R, Weishampel P, Fröberg M (2008) Measurement and importance of dissolved organic carbon. In: Hoover CM (ed) Field measurements for orest carbon monitoring. Springer, Houten, pp 171–176. https://doi.org/10.1007/978-1-4020-8506-2_13

    Chapter  Google Scholar 

  19. Bernoux M, Cerri CC, Neill C, Moraes JF (1998) The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82(1-3):43–58. https://doi.org/10.1016/S0016-7061(97)00096-7

    Article  Google Scholar 

  20. Cerri CC, Feller C, Balesdent J, Victoria RL, Plenecassagne A (1985) Application du traçage isotopique naturel en 13C, à l’étude de la dynamique de la matière organique dans les sols. C R Acad Sci Paris 300(9):423–429

    Google Scholar 

  21. Sousa Junior JGA, Cherubin MR, Cerri CEP, Cerri CC, Feigl BJ (2017) Sugar cane straw left in field during harvest: decomposition dynamics and composition changes. Soil Res 55(8):758. https://doi.org/10.1071/SR16310

    Article  Google Scholar 

  22. Coppens F, Garnier P, De Gryze S, Merckx R, Recous S (2006) Soil moisture, carbon and nitrogen dynamics following incorporation and surface application of labelled crop residues in soil columns. Eur J Soil Sci 57(6):894–905. https://doi.org/10.1111/j.1365-2389.2006.00783.x

    Article  CAS  Google Scholar 

  23. Cleveland CC, Neff JC, Townsend AR, Hood E (2004) Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7(3):275–285. https://doi.org/10.1007/s10021-003-0236-7

    Article  CAS  Google Scholar 

  24. Qiu Q, Wu L, Ouyang Z, Li B, Xi Y, Wu S, Gregorich EG (2015) Effects of plant-derived dissolved organic matter (DOM) on soil CO2 and N2O emissions and soil carbon and nitrogen sequestrations. Appl Soil Ecol 96:122–130. https://doi.org/10.1016/j.apsoil.2015.07.016

    Article  Google Scholar 

  25. Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165(4):277–304. https://doi.org/10.1097/00010694-200004000-00001

    Article  CAS  Google Scholar 

  26. Kalbitz K, Schmerwitz J, Schwesig D, Matzner E (2003) Biodegradation of soil derived dissolved organic matter as related to its properties. Geoderma 113(3-4):273–291. https://doi.org/10.1016/S0016-7061(02)00365-8

    Article  CAS  Google Scholar 

  27. De Troyer I, Amery F, Van Moorleghem C, Smolders E, Merckx R (2011) Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: a batch incubation study. Soil Biol Biochem 43(3):513–519. https://doi.org/10.1016/j.soilbio.2010.11.016

    Article  Google Scholar 

  28. Paterson E, Sim A (2013) Soil-specific response functions of organic matter mineralization to the availability of labile carbon. Glob Chang Biol 19(5):1562–1571. https://doi.org/10.1111/gcb.12140

    Article  PubMed  Google Scholar 

  29. Derrien D, Plain C, Courty PE, Gelhaye L, Moerdijk-Poortvliet TC (2014) Does the addition of labile substrate destabilise old soil organic matter. Soil Biol Biochem 76:149–160. https://doi.org/10.1016/j.soilbio.2014.04.030

    Article  CAS  Google Scholar 

  30. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321(1-2):5–33. https://doi.org/10.1007/s11104-009-9925-0

    Article  CAS  Google Scholar 

  31. Thorburn PJ, Keating BA, Robertson FA, Wood AW (2000) Long-term changes in soil carbon and nitrogen under trash blanketing. Queensland, Australia. Proc Aust Soc Sugar Cane Technol 22:217–224

    Google Scholar 

  32. Razafimbelo T, Barthès B, Larré-Larrouy MC, Luca EFD, Laurent JY, Cerri CC, Feller C (2006) Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey oxisol from southern Brazil. Agric Ecosyst Environ 115(1-4):285–289. https://doi.org/10.1016/j.agee.2005.12.014

    Article  Google Scholar 

  33. Galdos MV, Cerri CC, Cerri CEP (2009) Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153(3-4):347–352. https://doi.org/10.1016/j.geoderma.2009.08.025

    Article  CAS  Google Scholar 

  34. Meier EA, Thorburn PJ, Wegener MK, Basford KE (2006) The availability of nitrogen from sugarcane trash on contrasting soils in the wet tropics of north Queensland. Nutr Cycl Agroecosyst 75(1-3):101–114. https://doi.org/10.1007/s10705-006-9015-0

    Article  CAS  Google Scholar 

  35. Robertson FA, Thorburn PJ (2007) Management of sugarcane harvest residues: consequences for soil carbon and nitrogen. Aust J Soil Res 45(1):13–23. https://doi.org/10.1071/SR06080

    Article  CAS  Google Scholar 

  36. Santos GA, Silva LS da, Canellas LP, Camargo FAO (ed.) (2008) Fundamentos da matéria orgânica do solo: ecossistemas tropicais & subtropicais. 2. ed. rev. atual. ampl. Porto Alegre: Metrópole, 636 p

  37. Silva-Olaya AM, Cerri CEP, La Scala N Jr, Dias CTS, Cerri CC (2013) Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugar-cane. Environ Res Lett 8(1):015014. https://doi.org/10.1088/1748-9326/8/1/015014

    Article  Google Scholar 

  38. Carmo JB, Filoso S, Zotelli LC, Sousa Neto ER, Pitombo LM, Duarte-Neto PJ, Vargas VP, Andrade CA, Gava GJC, Rosseto R, Cantarella H, Neto AE, Martinelli LA (2013) Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation. Glob Change Biol Bioenergy 5(3):267–280. https://doi.org/10.1111/j.1757-1707.2012.01199.x

    Article  Google Scholar 

  39. Teixeira LG, Corradi MM, Fukuda A, Panosso AR, Reicosky D, Lopes A (2013) Soil and crop residue CO2-C emission under tillage systems in sugarcane-producing areas of southern Brazil. Sci Agric 70(5):327–335. https://doi.org/10.1590/S0103-90162013000500007

    Article  CAS  Google Scholar 

  40. Hemwong S, Toomsan B, Cadisch G, Limpinuntana V, Vityakon P, Patanothai A (2009) Sugarcane residue management and grain legume crop effects on N dynamics, N losses and growth of sugarcane. Nutr Cycl Agroecosyst 83(2):135–151. https://doi.org/10.1007/s10705-008-9209-8

    Article  Google Scholar 

  41. Fortes C, Vitti AC, Otto R, Ferreira DA, Franco HCJ, Trivelin PCO (2013) Contribution of nitrogen from sugarcane harvest residues and urea for crop nutrition. Sci Agric 70(5):313–320. https://doi.org/10.1590/S0103-90162013000500005

    Article  CAS  Google Scholar 

  42. Ferreira DA, Franco HCJ, Otto R, Vitti AC, Fortes C, Faroni CE, Garside AL, Trivelin PCO (2016) Contribution of N from green harvest residues for sugarcane nutrition in Brazil. GCB Bioenergy 8(5):859–866. https://doi.org/10.1111/gcbb.12292

    Article  Google Scholar 

  43. Otto R, Castro SAQ, Mariano E, Castro SGQ, Franco HCJ, Trivelin PCO (2016) Nitrogen use efficiency for sugarcane-biofuel production: what is next? Bioenerg Res 9(4):1272–1289. https://doi.org/10.1007/s12155-016-9763-x

    Article  CAS  Google Scholar 

  44. Kramer MG, Sollins P, Sletten RS, Swart PK (2003) N isotope fractionation and measures of organic matter alteration during decomposition. Ecology 84(8):2021–2025. https://doi.org/10.1890/02-3097

    Article  Google Scholar 

  45. Vitorello VA, Cerri CC, Andreux F, Feller C, Victoria RL (1989) Organic matter and natural carbon-13 distribution in forested and cultivated oxisols. Soil Sci Soc Am J 53(3):773–778. https://doi.org/10.2136/sssaj1989.03615995005300030024x

    Article  CAS  Google Scholar 

  46. Christensen BT (1992) Physical fractionation of soil and organic matter in primary particle size and density separates. Adv Soil Sci 20:1–90. https://doi.org/10.1007/978-1-4612-2930-8_1

    Article  Google Scholar 

  47. Signor D, Zani CF, Paladini AA, Deon MD, Cerri CEP (2014) Estoque de carbono e qualidade da matéria orgânica do solo em áreas cultivadas com cana-de-açúcar. R Bras Ci Solo 38(5):1402–1410. https://doi.org/10.1590/S0100-06832014000500005

    Article  Google Scholar 

  48. Brandani CB, Abbruzzini TF, Conant R, Cerri CEP (2016) Soil organic and organo-mineral fractions as indicators on the effects of land management in conventional and organic sugarcane systems. Soil Res 55(2):145–161. https://doi.org/10.1071/SR15322

    Article  Google Scholar 

  49. Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191(1):77–87. https://doi.org/10.1023/A:1004213929699

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the Centro de Tecnologia Canavieira (CTC) for providing us the research fields. Maurício R. Cherubin and Bruna G. Oliveira thank the Fundação de Estudos Agrários “Luiz de Queiroz” (Project no. 67555) for providing their post-doc scholarships.

Author information

Authors and Affiliations

Author notes

  1. Carlos C. Cerri is deceased. This paper is dedicated to his memory.

    • Carlos C. Cerri
Authors

Corresponding authors

Correspondence to José G. de Abreu Sousa Junior or Maurício R. Cherubin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa Junior, J.G.A., Cherubin, M.R., Oliveira, B.G. et al. Three-Year Soil Carbon and Nitrogen Responses to Sugarcane Straw Management. Bioenerg. Res. 11, 249–261 (2018). https://doi.org/10.1007/s12155-017-9892-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-017-9892-x

Keywords

Navigation