Skip to main content

Advertisement

Log in

Sugarcane residue management and grain legume crop effects on N dynamics, N losses and growth of sugarcane

  • Research Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

To reduce greenhouse gas emissions farmers are being encouraged not to burn sugarcane residues. An experiment was set up in NE Thailand, where sugarcane residues of the last ratoon crop were either burned, surface mulched or incorporated and subsequently the field left fallow or planted to groundnut or soybean. The objectives of the current experiment were to evaluate the residual effects of these treatments during the following new sugarcane crop on (i) microbial and mineral N dynamics, (ii) performance of sugarcane and (iii) effectiveness of recycled legume residues compared to mineral N fertilizer on N use efficiencies, 15N recovery in the system and in soil particle size and density fractions (using 15N labelled legume residues and fertilizer). The millable cane and sugar yield were positively affected by sugarcane residue mulching and incorporation compared to burning suggesting microbial remobilization of previously immobilized N. Residual effects of legumes increased sugarcane tillering and yield (127 and 116 Mg ha−1 for groundnut and soybean, respectively) compared to the fallow treatment without N fertilizer (112 Mg ha−1). Soybean residues of higher C:N ratio (33:1) and lignin content (13%) compared to groundnut residues (21:1 C:N, 5% lignin) decomposed slower and improved N synchrony with cane N demand. This led to a better conservation of residue N in the system with proportionally less 15N losses (15–17%) compared to the large losses from groundnut residues (50–57%) or from mineral N fertilizer (50–63%). 15N recoveries in soil were larger from residues (41–80%) than from fertilizer (30%) at final harvest. Recycled legume residues were able to substitute basal fertilizer N application but not topdressing after 6 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amato M, Ladd JN (1988) Assay for microbial biomass based on ninhydrin reactive nitrogen in extracts of fumigated soil. Soil Biol Biochem 20:107–114. doi:10.1016/0038-0717(88)90134-4

    Article  CAS  Google Scholar 

  • Analytical Software (2003) Statistix 8: user’s manual. Analytical Software, Tallahassee

    Google Scholar 

  • Andersen JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of methods. CABI Publishing, Wallingford

    Google Scholar 

  • Ando S, Meunchang S, Thippayarugs S, Prasertsak P, Matsumoto N, Yoneyama T (2002) Evaluation of sustainability of sugarcane production in Thailand based on nitrogen fixation, efficiency of nitrogen fertilizer and flow of organic matter. In: Ito O, Matsumoto N (eds) Development of sustainable agricultural system in northeast Thailand through local resources utilization and technology improvement. JIRCAS Working Report, Khon Kaen, Thailand, pp 61–64

  • Ball Coelho B, Tiessen H, Stewart JWB, Salcedo IH, Sampaio EVSB (1993) Residue management effects on sugarcane yield and soil properties in northeastern Brazil. Agron J 85:1004–1008

    CAS  Google Scholar 

  • Basanta MV, Dourado-Neto D, Reidchardt K, Bacchi OOS, Oliveira JCM, Trivelin PCO et al (2003) Management effects on nitrogen recovery in a sugarcane crop grown in Brazil. Geoderma 116:235–248. doi:10.1016/S0016-7061(03)00103-4

    Article  CAS  Google Scholar 

  • Courtaillac N, Baran R, Oliver R, Casabianca H, Ganry F (1998) Efficiency of nitrogen fertilizer in sugarcane-vertical system in Guadeloupe according to growth and ratoon age of the cane. Nutr Cycl Agroecosyst 5:9–17. doi:10.1023/A:1009765302105

    Article  Google Scholar 

  • De Resende AS, Xavier RP, de Oliveira OC, Urquiaga S, Alves BJR, Boddey RM (2006) Long-term effects of pre-harvest burning and nitrogen and vinasse applications on yield of sugar cane and soil carbon and nitrogen stock on a plantation in Pernambuco, NE Brazil. Plant Soil 281:339–351. doi:10.1007/s11104-005-4640-y

    Article  CAS  Google Scholar 

  • Eagle AJ, Brid JA, Hill JE, Horwath WR, van Kessel C (2001) Nitrogen dynamics and fertilizer use efficiency in rice following straw incorporation and winter flooding. Agron J 93:1346–1354

    Google Scholar 

  • Freney JR, Denmead OT, Wood AW, Saffigna PG, Chapman LS, Ham GJ et al (1992) Factors controlling ammonia loss from trash covered sugarcane fields fertilized with urea. Nutr Cycl Agroecosyst 31:341–349

    CAS  Google Scholar 

  • Giller KE, Cadisch G (1995) Future benefits from biological nitrogen fixation in agriculture: an ecological approach. Plant Soil 174:255–277. doi:10.1007/BF00032251

    Article  CAS  Google Scholar 

  • Giller KE, Nambiar PTC, Srinivasa Rao B, Dart PJ, Day JM (1987) A comparison of nitrogen fixation in genotypes of groundnut (Arachis hypogaea L.) using 15N-isotope dilution. Biol Fertil Soils 5:23–25. doi:10.1007/BF00264341

    Article  Google Scholar 

  • Giller KE, Cadisch G, Palm C (2002) The north–south divide! Organic wastes, or resources for nutrient management? Agronomie 22:703–709. doi:10.1051/agro:2002058

    Article  Google Scholar 

  • Graham MH, Haynes RJ (2005) Organic matter accumulation and fertilizer-induced acidification interact to affect soil microbial and enzyme activity on a long-term sugarcane management experiment. Biol Fertil Soils 41(4):249–256. doi:10.1007/s00374-005-0830-2

    Article  CAS  Google Scholar 

  • Gülser F (2005) Effects of ammonium sulphate and urea on NO3 and NO2 accumulation, nutrient contents and yield criteria in spinach. Sci Hortic 106(3):330–340. doi:10.1016/j.scienta.2005.05.007

    Article  CAS  Google Scholar 

  • Hemwong S, Cadisch G, Toomsan B, Limpinuntana V, Vityakon P, Patanothai A (2008) Dynamics of residue decomposition and N2 fixation of grain legumes upon sugarcane stover retention as an alternative to burning. Soil Tillage Res 99:84–97. doi:10.1016/j.still.2008.01.003

    Article  Google Scholar 

  • Hunsigi G (1993) Production of sugarcane, theory and practice. Springer-Verlag, Berlin

    Google Scholar 

  • International Commission for Uniform Methods of Sugar Analysis (1994) Method GS 5/7-1. Norwich, England

  • Ma BL, Dwyer LM, Gregorich EG (1999) Soil nitrogen amendment effects on nitrogen uptake and grain yield of maize. Agron J 91:650–656

    Google Scholar 

  • Ng Kee Kwong KF, Deville J (1994) The course of fertilizer nitrogen uptake by rainfed sugarcane in Mauritius. J Agric Sci 122:385–391

    Article  Google Scholar 

  • Norman RJ, Gilmour JT, Wells BR (1990) Mineralization of nitrogen from nitrogen-15 labeled crop residues and utilization by rice. Soil Sci Soc Am J 54:1351–1356

    CAS  Google Scholar 

  • Palm CA, Gachego C, Delve R, Cadisch G, Giller KE (2001) Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agric Ecosyst Environ 83:27–42. doi:10.1016/S0167-8809(00)00267-X

    Article  Google Scholar 

  • Pankhurst CE, Blair BL, Magarey RC, Stirling GR, Bell MJ, Garside AL (2005) Effect of rotation breaks and organic matter amendments on the capacity of soils to develop biological suppression towards soil organisms associated with yield decline of sugarcane. Appl Soil Ecol 28:271–282. doi:10.1016/j.apsoil.2004.07.010

    Article  Google Scholar 

  • Promsakha Na Sakonnakhon S, Toomsan B, Cadisch G, Baggs EM, Vityakon P, Limpinuntana V et al (2005) Dry season groundnut stover management practices determine nitrogen cycling efficiency and subsequent maize yields. Plant Soil 272:183–199. doi:10.1007/s11104-004-4780-5

    Article  CAS  Google Scholar 

  • Promsakha Na Sakonnakhon S, Cadisch G, Toomsan B, Vityakon P, Limpinuntana V, Jogloy S et al (2006) Weeds-friend or foe? The role of weed composition on stover nutrient recycling efficiency. Field Crops Res 97:238–247. doi:10.1016/j.fcr.2005.10.006

    Article  Google Scholar 

  • Segda Z, Haefele SM, Wopereis MCS, Sedogo MP, Guinko S (2004) Agro-economic characterization of rice production in a typical irrigation scheme in Burkina Faso. Agron J 96:1314–1322

    Google Scholar 

  • Smith CJ, Wright GC, Woodroofe MR (1988) The effect of irrigation and nitrogen fertilizer on rapeseed (Brassica napus) production in south-eastern Australia. II. Nitrogen accumulation and oil yield. Irrig Sci 9:15–25. doi:10.1007/BF00292140

    Article  CAS  Google Scholar 

  • Suman A, Lal M, Singh AK, Gaur A (2006) Microbial biomass turnover in Indian subtropical soils under different sugarcane intercropping systems. Agron J 98:698–704. doi:10.2134/agronj2005.0173

    Article  Google Scholar 

  • Svecnjak Z, Rengel Z (2006) Canola cultivars differ in nitrogen utilization efficiency at vegetative stage. Field Crops Res 97:221–226. doi:10.1016/j.fcr.2005.10.001

    Article  Google Scholar 

  • Takahashi DT (1970) Fate of unrecovered fertilizer nitrogen in lysimeter studies with 15N. Hawaii Plant Rec 58:95–101

    Google Scholar 

  • Tecator (1984) Determination of ammonia nitrogen (ASN 65-32/84) or nitrate nitrogen (ASN 65-31/84) in soil samples extractable by 2 M KCl using flow injection analysis. Application notes. Tecator, Höganas, Sweden

  • Toomsan B, McDonagh JF, Limpinuntana V, Giller KE (1995) Nitrogen fixation by groundnut and soybean and residual nitrogen benefits to rice in farmer’s fields in northeast Thailand. Plant Soil 175:45–56. doi:10.1007/BF02413009

    Article  CAS  Google Scholar 

  • Vallis I, Parton WJ, Keating BA, Wood AW (1996) Simulation of the effects of trash and N fertilizer management on soil organic matter levels and yields of sugarcane. Soil Tillage Res 38:115–132. doi:10.1016/0167-1987(96)01014-8

    Article  Google Scholar 

  • Vityakon P, Meepech S, Cadisch G, Toomsan B (2000) Soil organic matter and nitrogen transformation mediated by plant residues of different qualities in sandy acid upland and paddy soil. Neth J Agric Sci 48:75–90

    CAS  Google Scholar 

  • Wiedenfeld RP (1998) Previous-crop effects on sugarcane response to nitrogen fertilization. Agron J 90:161–165

    Google Scholar 

  • Wood AW (1991) Management of crop residues following green harvesting of sugarcane in north Queensland. Soil Tillage Res 20:69–85. doi:10.1016/0167-1987(91)90126-I

    Article  Google Scholar 

Download references

Acknowledgements

The research reported here was funded by the Royal Golden Jubilee Ph.D. Program and the Senior Research Scholar Project of Prof. Dr. Aran Patanothai under the Thailand Research Fund, Thailand and the Special Research Programme (SFB 564) from DFG (Deutsche Forschungsgemeinschaft), Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cadisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemwong, S., Toomsan, B., Cadisch, G. et al. Sugarcane residue management and grain legume crop effects on N dynamics, N losses and growth of sugarcane. Nutr Cycl Agroecosyst 83, 135–151 (2009). https://doi.org/10.1007/s10705-008-9209-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-008-9209-8

Keywords

Navigation