Skip to main content

An Overview on Organosolv Production of Bio-refinery Process Streams for the Production of Biobased Chemicals

  • Chapter
  • First Online:
Thermochemical and Catalytic Conversion Technologies for Future Biorefineries

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 234 Accesses

Abstract

The potential of renewable energy and chemical sources is more important than ever before due to the combination of diminishing crude oil supplies and population increase. The bio-refinery concept is evolving from a fascinating notion to a viable replacement for a variety of fossil-fuel-based goods. Pre-treatment processes designed for a comprehensive bio-refinery shall show selective dissociation of each constituent of a biomass feedstock, ease of access to and detachment of the constituents after separation, high yield revival of every component, process components readily available for conversion into chemicals with negligible purification, as well as economic feasibility. These criteria are typically met by organosolv pre-treatments. To be broadly accepted by markets and the public, the generation of renewable chemicals, as well as biofuels, should be price and performance competitive employing crude oil-derived counterparts. The focus of this study is on developing a biomass conversion technique that maximizes the transformation of lignocellulosic biomass into commercially viable high-value products, allowing for effective translation to an economically feasible commercial process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFEX:

Ammonia fiber explosion

IEA:

International Energy Agency

LCB:

Lignocellulosic biomass

LHW:

Liquid hot water

References

  • Agrawal K, Verma P (2022) An overview of various algal biomolecules and its applications. In: Shah M, Rodriguez-Couto S, De La Cruz CBV, Biswas J (eds) An integration of phycoremediation processes in wastewater treatment. Elsevier Inc., pp 249–270. https://doi.org/10.1016/B978-0-12-823499-0.00006-7

    Chapter  Google Scholar 

  • Arato C, Pye EK, Gjennestad G (2005) The lignol approach to biorefining of woody bio-mass to produce ethanol and chemicals. Appl Biochem Biotechnol 121:871–882

    Article  PubMed  Google Scholar 

  • Aresta M, Dibenedetto A, Dumeignil F (2013) Bio-refinery: from bio-mass to chemicals and fuels. Green Process Synth 2:87–88

    Google Scholar 

  • Aziz S, Sarkanen K (1989) Organo solv pulping—a review. Tappi J 72:169–175

    CAS  Google Scholar 

  • Behera S (2014) Importance of chemical pre-treatment for bioconversion of lignocellulosic bio-mass. Renew Viable Energy Rev 36:91–106

    Article  CAS  Google Scholar 

  • Bhardwaj N, Verma P (2021) Microbial xylanases: a helping module for the enzyme biorefinery platform. In: Srivastava N, Srivastava M (eds) Bioenergy research: evaluating strategies for commercialization and sustainability, vol 27. Wiley Online, pp 2129–2152

    Google Scholar 

  • Bhardwaj N, Kumar B, Agrawal K, Verma P (2021a) Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess 8:1–34

    Article  CAS  Google Scholar 

  • Bhardwaj N, Agrawal K, Kumar B, Verma P (2021b) Role of enzymes in deconstruction of waste biomass for sustainable generation of value-added products. In: Thatoi H, Mohapatra S, Das SK (eds) Bioprospecting of enzymes in industry. Healthcare and sustainable environment. Springer, Singapore, pp 219–250

    Chapter  Google Scholar 

  • Bommarius AS, Katona A, Cheben SE, Patel AS, Ragauskas AJ, Knudson K, Pu Y (2008) Cellulase kinetics as a function of cellulose pre-treatment. Metab Eng 10:370–381

    Article  CAS  PubMed  Google Scholar 

  • Bozell JJ (2008) Feedstocks for the future - bio-refinery production of chemicals from renewable carbon. Clean-Soil Air Water 36:641

    Article  CAS  Google Scholar 

  • Capolupo L, Faraco V (2016) Green methods of lignocellulose pre-treatment for bio-refinery development. Appl Microbiol Biotechnol 100(22):9451–9467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Zhao J, Hu T, Zhao X, Liu D (2015) A comparison of several organosolv pre-treatments for improving the enzymatic hydrolysis of wheat straw: substrate digestibility, fermentability and structural features. Appl Energy 150:224–232

    Article  CAS  Google Scholar 

  • Clark JH, Budarin V, Deswarte FEI, Hardy JJE, Kerton FM (2006) Green chemistry and the bio-refinery: a partnership for a viable future. Green Chemistry 8:853–860

    Article  CAS  Google Scholar 

  • Cronlund M, Powers J (1992) Bleaching of Alcell organosolv pulps using conventional and non chlorine bleaching sequences. Tappi J 75:189

    CAS  Google Scholar 

  • Cybulska I (2015) Organo solv fractionation of palm tree residues. Energy Procedia 75:742–747

    Article  CAS  Google Scholar 

  • Dahlmann G, Schroeter MC (1990) Pulping of spruce and pine with alcohol and alkali by the organocell process. Tappi Pulping Conf Toronto 14–17:657–661

    Google Scholar 

  • De Jong E, van Ree R, Sanders J, Langeveld JWA (2009) Bio-refinery. In: Langeveld H et al (eds) The biobased economy: bio-fuels, materials, and chemicals in the post-oil era. Earthscan, London, pp 111–130

    Google Scholar 

  • Dermibas MF (2009) Bio-refineries for bio-fuel upgrading: a critical review. Appl Energy 86:S151–S161. https://doi.org/10.1016/j.apenergy.2009.04.043

    Article  CAS  Google Scholar 

  • Dewulf J, Van Langenhoven H (2006) Renewables-based technology. Sustainability assessment. John Wiley & Sons, Chichester. https://doi.org/10.1002/0470022442

    Book  Google Scholar 

  • Eggert C, Temp U, Eriksson KEL (1997) Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett 407(1):89–92

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Campbell JE, Lobell DB (2008) Bio-mass energy: the scale of the potential resource. Trends Ecol Evol 23:65–72

    Article  PubMed  Google Scholar 

  • Frankfurt CIB (2011) Partner of industrial biotechnology, CIB Frankfurt (http://www.cib-frankfurt.de/mm/CIB-Image-RZe-online.pdf)

  • Funaoka M, Abe I (1989) Rapid separation of wood into carbohydrate and lignin with concentrated acid- phenol system. Tappi J 72:145–149

    CAS  Google Scholar 

  • Garcıa A, Alriols GM, Labidi J (2014) Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in bio-refinery processes. Ind Crops Prod 53:102–110

    Article  CAS  Google Scholar 

  • Geng A, Xin F, Ip JY (2012) Ethanol production from horticultural waste treated by a modified organosolv method. Bioresour Technol 104:715–721

    Article  CAS  PubMed  Google Scholar 

  • Goswami RK, Agrawal K, Mehariya S, Molino A, Musmarra D, Verma P (2020) Microalgae-based biorefinery for utilization of carbon dioxide for production of valuable bioproducts. In: Kumar A, Sharma S (eds) Chemo-biological systems for CO2 utilization. CRC Press, pp 203–228

    Chapter  Google Scholar 

  • Goswami RK, Agrawal K, Verma P (2021) Microalgae-based biofuel-integrated biorefinery approach as sustainable feedstock for resolving energy crisis. In: Srivastava M, Srivastava N, Singh R (eds) Bioenergy research: commercial opportunities & challenges. Springer, pp 267–293

    Chapter  Google Scholar 

  • Gottlieb K, Preuss AW, Meckel J, Berg A (1992) Acetocell pulping of spruce and chlorine-free bleaching. In: Solvent pulping symposium notes, Boston, pp. 35–39

    Google Scholar 

  • Hallac BB, Pu Y, Ragauskas AJ (2010) Chemical transformations of Buddleja davidii lignin during ethanol organosolv pre-treatment. Energy Fuels 24(4):2723–2732

    Article  CAS  Google Scholar 

  • Hamelinck CN, Van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic bio-mass: techno-economic performance in short-, middle- and long term. Biomass Bioenergy 28:384–410. https://doi.org/10.1016/j.biombioe.2004.09.002

    Article  CAS  Google Scholar 

  • Himmel ME (2008) Bio-mass recalcitrance. deconstructing the plant cell wall or bioenergy. Blackwell, Oxford

    Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from bio-mass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  PubMed  Google Scholar 

  • Humbird D, Davis R, Tao YH, Kinchin C, Hsu DD, Aden A (2011) Process design and economics for biochemical conversion of lignocellulosic bio-mass to ethanol.

    Google Scholar 

  • International Energy Agency (2012) Task 42 bio-refinery. Definition bio-refinery. http://www.iea-bioenergy.task42-bio refineries.com/activities/classification/.

  • Jimenez L (2004) Organo solv pulping of olive tree trimmings by use of ethylene glycol/soda/water mixtures. Holzforschung 58(2):122–128

    Article  CAS  Google Scholar 

  • Jimenez L, Maestre F, Pere I (1999) Use of butanol-water mixtures for making wheat straw pulp. Wood Sci Technol 33:97

    Article  CAS  Google Scholar 

  • Jimenez L, Perez A, De la Torre MJ, Rodriguez AB, Angulo V (2008) Ethylene glycol pulp from tagasaste. Bioresour Technol 99:2170

    Article  CAS  PubMed  Google Scholar 

  • Joelsson E, Erdei GM, Wallberg O (2016) Techno-economic evaluation of integrated first- and second-generation ethanol production from grain and straw. Biotechnol Biofuels 9(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johansson A, Aaltonen O, Ylinen P (1987) Organosolv pulping—methods and pulp properties. Bio-mass 13:45

    CAS  Google Scholar 

  • Kabir MM, Rajendran K, Taherzadeh MJ, Horvath IS (2015) Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pre-treatment. Bioresour Technol 178:201–208

    Article  CAS  PubMed  Google Scholar 

  • Kautto J, Realff MJ, Ragauskas AJ (2013) Design and simulation of an organosolv process for bioethanol production. Biomass Convers Biorefin 3:199–212. https://doi.org/10.1007/s13399-013-0074-6

    Article  CAS  Google Scholar 

  • Kim DE, Pan X (2010) Preliminary study on converting hybrid poplar to high-value chemicals and lignin using organosolv ethanol process. Ind Eng Chem Res 49(23):12156–12163

    Article  CAS  Google Scholar 

  • Kleinert TN, Tayenthal K (1932) Process of decomposing vegetable fibrous matter for the purpose of the simultaneous recovery both of the cellulose and of the incrusting ingredients. U.S. patent 1:856- 567

    Google Scholar 

  • Koo BW (2011) Characterization of by-products from organosolv pre-treatments of yellow poplar wood (Liriodendron tulipifera) in the presence of acid and alkali catalysts. J Ind Eng Chem 17(1):18–24

    Article  CAS  Google Scholar 

  • Kumar P (2009) Methods for pre-treatment of lignocellulosic bio-mass for efficient hydrolysis and bio-fuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Kumar B, Verma P (2021a) Life cycle assessment: Blazing a trail for bioresources management. Energy Convers Manag: X 10:100063

    CAS  Google Scholar 

  • Kumar B, Verma P (2021b) Biomass-based biorefineries: an important architype towards a circular economy. Fuel 288:119622

    Article  CAS  Google Scholar 

  • Kumar B, Bhardwaj N, Agrawal K, Verma P (2020) Bioethanol production: generation-based comparative status measurements. In: Srivastava N, Srivastava M, Mishra P, Gupta V (eds) Biofuel production technologies: critical analysis for sustainability, Clean energy production technologies. Springer, Singapore, pp 155–201

    Chapter  Google Scholar 

  • Li MF (2012) Formic acid based organosolv pulping of bamboo (Phyllostachys acuta): comparative characterization of the dissolved lignins with milled wood lignin. Chem Eng J 179:80–89

    Article  CAS  Google Scholar 

  • Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98(16):3061–3068

    Article  CAS  PubMed  Google Scholar 

  • Liitiä T, Mikkonen H, Uusitalo J, Tamminen T, Colodette JL (2011) Organosolv pre-treatment of lignocellulosics for bioethanol production. In: 5th International Colloquium on Eucalyptus Pulp, Porto Seguro-BA 9 (12): 12

    Google Scholar 

  • Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pre-treatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology 96(18):1967–1977

    Article  CAS  PubMed  Google Scholar 

  • Lora JH, Aziz S (1985) Organosolv pulping: a versatile approach to wood refining. Tappi Journal 68:94–97

    CAS  Google Scholar 

  • Luoma P, Vanhanen J, Tommila P (2011) Distributed bio-based economy—driving viable growth. Sitra. http://www.sitra.fi/julkaisu/2011/distributed-bio-based-economy

  • Mabee WE, Gregg DJ, Arato C, Berlin A, Bura R, Gilkes N, Mirochnik O, Pan X, Pye EK, Saddler JN (2006) Updates on softwood-to-ethanol process development. Appl Biochem Biotechnol 129:55–70

    Article  PubMed  Google Scholar 

  • Mazzarella VNG (2007) Jornada Madeira Energética-CapimElefante com Fonte de Energia no Brasil: RealidadeAtual e Expectativas. IPT-BNDS, Rio de Janeiro. Maio de.

    Google Scholar 

  • McDonough TJ (1993) The chemistry of organosolv delignification. Tappi J 76:186

    CAS  Google Scholar 

  • Mehariya S, Goswami RK, Karthikeysan OP, Verma P (2021) Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere 280:130553

    Article  CAS  PubMed  Google Scholar 

  • Mesa L (2011) The effect of organosolv pre-treatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J 168(3):1157–1162

    Article  CAS  Google Scholar 

  • Mistra (2003) The Eco-cyclic pulp mill. The foundation for strategic environmental research. Report No.: KAM report A100

    Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M (2005a) Features of promising technologies for pre-treatment of lignocellulosic bio-mass. Bioresour Technol 96:673

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005b) Features of promising technologies for pre-treatment of lignocellulosic bio-mass. Bioresour Technol 96(6):673–686

    Article  CAS  PubMed  Google Scholar 

  • Munoz C, Mendonca R, Baeza J, Berlin A, Saddler J, Freer J (2007) Bioethanol production from bio-organosolv pulps of Pinus radiate and Acacia dealbata. J Chem Technol Biotechnol 82:767

    Article  CAS  Google Scholar 

  • Muurinen E (2000) Organo solv Pulping, A Review and Distillation Study Related to Peroxyacid Pulping. Dissertation, University of Oulu, Oulu. 314

    Google Scholar 

  • News (2006) Production: growth is the norm. Chem Eng News 84:59–68

    Google Scholar 

  • Oliet M, Rodriguez F, Garcia J, Gilarranz MA (2001) The effect of auto catalyzed ethanol pulping on lignin characteristics. J Wood Chem Technol 21:81

    Article  CAS  Google Scholar 

  • Oliet M, Garcia J, Rodriguez F, Gilarrranz MA (2002) Solvent effects in autocatalyzed alcohol-water pulping: comparative study between ethanol and methanol as delignifying agents. Chem Eng J 87:157

    Article  CAS  Google Scholar 

  • Pan XJ, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao ZZ, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90:473–481

    Article  CAS  PubMed  Google Scholar 

  • Pan XJ, Gilkes N, Kadla J, Pye K, Saka S, Gregg D (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851

    Article  CAS  PubMed  Google Scholar 

  • Panagiotopoulos IA, Chandra RP, Saddler JN (2013) A two-stage pre-treatment approach to maximize sugar yield and enhance reactive lignin recovery from poplar wood chips. Bioresour Technol 130:570–577

    Article  CAS  PubMed  Google Scholar 

  • Pande M, Bhaskarwar AN (2012) In bio-mass conversion to energy. In: Baskar C, Baskar S, Dhillon RS (eds) Bio-mass conversion: the interface of biotechnology, chemistry and materials science. Springer, Berlin, Heidelberg, pp 1–90

    Google Scholar 

  • Paszner L, Cho HJ (1989) Organosolv pulping—acidic catalysis options and their effect on fiber quality and delignification. Tappi J 72:135

    CAS  Google Scholar 

  • Paulino VT, De Lucenas TL, Possenti RA (2007) Capimelefante cv. Paraíso (Pennisetum hybridum): Produção de matériaseca, composiçãoquímica e biológicaemdiferentesalturas de corte. http://www.iz.sp.gov.br/artigos.php?ano=2007

  • Perttunen J, Myllykoski L, Keiski RL (2001) Lactic acdi fermentation of hemicellulose liquors and their activated carbon pre-treatments. In: Hofman M, Thonart P (eds) Engineering and manufacturing for biotechnology. Springer, Dordrecht, Netherlands, pp 29–38

    Google Scholar 

  • Pienkos PT, Zhang M (2009) Role of pre-treatment and conditioning processes on toxicity of lignocellulosic bio-mass hydrolysates. Cellulose 16:743–762

    Article  CAS  Google Scholar 

  • Poppius-Levlin K, Mustonen R, Huovila T, Sundquist J (1991) Milox pulping with acetic acid/peroxyacetic acid. Paperi Ja Puu- Paper Timber 73:154

    CAS  Google Scholar 

  • Pye EK, Lora JH (1991) The Alcell process—a proven alternative to kraft pulping. Tappi J 74:113

    CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederic WJ, Hallett JP, Leak DJ, Liotta CL (2006a) The path forward for bio-fuels and biomaterials. Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006b) The path forward for bio-fuels and biomaterials. Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JAR (2011) From the mill to a bio-refinery: the sugar factory as an industrial enterprise for the generation of bio-chemicals and bio-fuels. Química Nova 34:1242–1254. https://doi.org/10.1590/S0100-40422011000700024

    Article  CAS  Google Scholar 

  • Rousu P, Rousu P, Anttila J (2002) Viable pulp production from agricultural waste. Resour Conserv Recycl 35:85–103. https://doi.org/10.1016/S0921-3449(01)00124-0

    Article  Google Scholar 

  • Ruiz HA (2011) Development and characterization of an environmentally friendly process sequence (autohydrolysis and Organosolv) for wheat straw delignification. Appl Biochem Biotechnol 164(5): 629–641

    Google Scholar 

  • Ruzene DS, Goncalves AR, Teixeira JA, De Amorim MTP (2007) Carboxymethyl cellulose obtained by ethanol/water organosolv process under acid conditions. Appl Biochem Biotechnol 137:573

    PubMed  Google Scholar 

  • Sanford K, Chotani G, Danielson N, Zahn JA (2016) Scaling up of renewable chemicals. Curr Opin Biotechnol 38:112–122

    Article  CAS  PubMed  Google Scholar 

  • Sannigrahi P, Ragauskas AJ, Miller SJ (2010) Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy Fuels 24(1):683–689

    Article  CAS  Google Scholar 

  • Sarkanen KV (1990) Chemistry of solvent pulping. Tappi J 73:215

    CAS  Google Scholar 

  • Shatalov AA, Pereira H (2007) Polysaccharide degradation during ozone-based TCF bleaching of non-wood organosolv pulps. Carbohydr Polym 67:275

    Article  CAS  Google Scholar 

  • Shuai L, Yang Q, Zhu JY, Lu FC, Weimer PJ, Ralph J, Pan XJ (2010) Comparative study of SPORL and dilute-acid pre-treatments of spruce for cellulosic ethanol production. Bioresour Technol 101:3106–3114

    Article  CAS  PubMed  Google Scholar 

  • Sixta H, Harms H, Dapia S, Parajo JC, Puls J, Saake B (2004) Evaluation of new organosolv dissolving pulps. Part I: Preparation, analytical characterization and viscose processability. Cellulose 11:73

    Article  CAS  Google Scholar 

  • Sjöström E (1993) Wood chemistry. In: Sjöström E (ed) Wood chemistry, 2nd edn. Academic Press, San Diego, p iv

    Google Scholar 

  • Srivastava DC, Lisle RJ (2004) Rapid analysis of fold shape using Bezier curves. J Struct Geol 26:1553–1559

    Article  Google Scholar 

  • StÃ¥hl M, Nieminen K, Sixta H (2018) Hydrothermolysis of pine wood. Bio-mass Bioenergy 109:100–113

    Article  CAS  Google Scholar 

  • Stephanopoulos G (2007) Challenges in engineering microbes for bio-fuel production. Science 5:801–804

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pre-treatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao L, Aden A, Elander RT, Pallapolu VR, Lee YY, Garlock RJ (2011) Process and techno economic analysis of leading pre-treatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol 102(24):11105–11114

    Article  CAS  PubMed  Google Scholar 

  • US Department of Agriculture (2008) US biobased products market potential and projections through 2025. OCE-2008-01, USDA.

    Google Scholar 

  • Vila C, Santos V, OJC P (2003a) Recovery of lignin and furfural from acetic acid–water–HCl pulping liquors. Bioresour Technol 90(3):339–344

    Article  CAS  PubMed  Google Scholar 

  • Vila C, Santos V, OJC P (2003b) Simulation of an organosolv pulping process: Generalized material balances and design calculations. Ind Eng Chem Res 42(2):349–356

    Article  CAS  Google Scholar 

  • Vilela H, Rodriguez N, Dias Teixeira E (1997) Produções de forragem de um híbridohexaplóide (Pennisetum glaucum X Pennisetum purpureum) e seu valor nutritivo. In: Anais da XXXIV Reunião da SBZ, Juiz de Fora, Julho de.

    Google Scholar 

  • Vilela H, Barbosa FA, Rodriguez N (2001) Qualidade das silagens de capimelefante Paraíso submetidas a três tempos de emurchecimento. XXXVIII ReuniãoAnual da SociedadeBrasileira de Zootecnia, Piracicaba, Julho de, Anais, pp 323–324

    Google Scholar 

  • Wang K (2012) Organosolv fractionation process with various catalysts for improving bioconversion of triploid poplar. Process Biochem 47(10):1503–1509

    Article  CAS  Google Scholar 

  • Werpy T, Petersen G (2004) US Department of Energy. Top value added chemicals from bio-mass (Results of screening for potential candidates from sugars and synthesis gas, vol. 1). US Department of Energy.

    Google Scholar 

  • Xu F (2006) Comparative study of organosolv lignins from wheat straw. Ind Crops Prod 23(2):180–193

    Article  CAS  Google Scholar 

  • Xu YJ, Li KC, Zhang MY (2007) Lignin precipitation on the pulp fibers in the ethanol-based organosolv pulping. Colloids Surfaces A 301:255

    Article  CAS  Google Scholar 

  • Young RA, Baierl KW (1985) Ester pulping of wood: a revolutionary process. Southern Pulp Paper 48:15–17

    Google Scholar 

  • Zerva C, Peschos Z, Poulopoulos SG, Philippopoulos CJ (2003) Treatment of industrial oily wastewaters by wet oxidation. J Hazard Mater B97:257–265

    Article  Google Scholar 

  • Zhang MY, Xu YJ, Li KC (2007) Removal of residual lignin of ethanol-based organosolv pulp by an alkali extraction process. J Appl Polym Sci 106:630

    Article  CAS  Google Scholar 

  • Zhang K, Pei Z, Wang D (2016) Organic solvent pre-treatment of lignocellulosic bio-mass for bio-fuels and bio-chemicals: a review. Bioresour Technol 199:21–33

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Cheng K, Liu D (2009a) Organosolv pre-treatment of lignocellulosic bio-mass for enzymatic hydrolysis. Applied Microbiology and Biotechnology 82(5):815–827

    Article  CAS  PubMed  Google Scholar 

  • Zhao XB, Cheng KK, Liu DH (2009b) Organosolv pre-treatment of lignocellulosic bio-mass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, O’Dwyer JP, Chang VS, Granda CB, Holtzapple MT (2008) Structural features affecting bio-mass enzymatic digestibility. Bioresour Technol 99:3817–3828

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

All the authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sridevi, V., Suriapparao, D.V., Tanneru, H.K., Prasad, K.S.N.V. (2022). An Overview on Organosolv Production of Bio-refinery Process Streams for the Production of Biobased Chemicals. In: Verma, P. (eds) Thermochemical and Catalytic Conversion Technologies for Future Biorefineries. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-4312-6_11

Download citation

Publish with us

Policies and ethics