Skip to main content
Log in

Isolation and Structural Characterization of Lignin Polymer from Dendrocalamus sinicus

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Dendrocalamus sinicus, which is the largest bamboo species in the world, has broad prospects in the fields of bioenergy and biorefinery application. In this study, dewaxed D. sinicus samples were sequentially treated with 80 % ethanol containing 0.025 M HCl, 80 % ethanol containing 0.5 % NaOH, and aqueous alkaline solutions (containing 2.0, 5.0, and 8.0 % NaOH, respectively) at 75 °C for 4 h, in which 9.63, 8.71, 21.83, 21.09, and 13.09 % of the original lignin were isolated, respectively. The lignin fractions obtained were comparatively characterized by chemical composition, molecular weights, and structural features by wet chemical and instrumental analysis methods. It was found that the bamboo lignin fractions isolated by ethanol had lower weight-average molecular weights (1,360–1,380 g mol−1) and contained much higher amounts of associated hemicelluloses, while the lignin fractions isolated by aqueous alkaline solutions had higher weight-average molecular weights (5,300–6,040 g mol−1) and contained lower amounts of associated hemicelluloses. Spectroscopy analyses indicated that the bamboo lignin was a typical grass lignin, consisting of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units. A small percentage of the lignin side-chain was found to be acetylated at the γ-carbon, predominantly at syringyl units. The major interunit linkages present in the bamboo lignin obtained were β-O-4′ aryl ether linkages, together with lower amounts of β-β′, β-5′, and β-1′ linkages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Michael ARM (2011) Renewable resources for polymer chemistry: a sustainable alternative? Macromol Rapid Commun 32:1297–1298

    Article  Google Scholar 

  2. Zhang X, Tu MB, Paice MG (2011) Routes to potential bioproducts from lignocellulosic biomass lignin and hemicelluloses. Bioenerg Res 4:246–257

    Article  Google Scholar 

  3. Fitzpatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922

    Article  PubMed  CAS  Google Scholar 

  4. Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9:1493–505

    Article  PubMed  CAS  Google Scholar 

  5. Ohrnberger D (1999) The bamboos of the world: annotated nomenclature and literature of the species and the higher and lower taxa. Elsevier Science, Amsterdam, pp 12–38

    Google Scholar 

  6. Guerra A, Filpponen I, Lucia LA, Argyropoulos DS (2006) Comparative evaluation of three lignin isolation protocols for various wood species. J Agric Food Chem 54:9696–9705

    Article  PubMed  CAS  Google Scholar 

  7. Eriksson Ö, Goring D, Lindgren BO (1980) Structural studies on the chemical bonds between lignins and carbohydrates in spruce wood. Wood Sci Technol 14:267–279

    Article  CAS  Google Scholar 

  8. Sun RC, Fang JM, Goodwin A, Lawther JM, Bolton AJ (1998) Isolation and characterization of polysaccharides from abaca fiber. J Agric Food Chem 46:2817–2822

    Article  CAS  Google Scholar 

  9. Pu Y, Chen F, Ziebell A, Davison BH, Ragauskas AJ (2009) NMR characterization of C3H and HCT down-regulated alfalfa lignin. Bioenerg Res 2:198–208

    Article  Google Scholar 

  10. Martínez V, Mitjans M, Vinardell MP (2012) Pharmacological applications of lignins and lignins related compounds: an overview. Curr Org Chem 16:1963–1870

    Google Scholar 

  11. Li MF, Fan YM, Sun RC, Xu F (2010) Characterization of extracted lignin of bamboo (Neosinocalamus Affinis) pretreated with sodium hydroxide/urea solution at low temperature. Bioresources 5:1762–1778

    CAS  Google Scholar 

  12. Fengel D, Shao X (1985) Studies on the lignin of the bamboo species Phylostachys makinoi Hay. Wood Sci Technol 19:131–137

    Article  CAS  Google Scholar 

  13. Nakamura Y, Higuchi T (1976) Ester linkage of p-coumaric acid in bamboo lignin. Holzforschung 30:187–191

    Article  CAS  Google Scholar 

  14. Björkman A (1957) Lignin and lignin–carbohydrate complexes extraction from wood meal with neutral solvents. Ind Eng Chem 49:1395–1398

    Article  Google Scholar 

  15. Hu Z, Yeh TF, Chang HM, Matsumoto Y, Kadla JF (2006) Elucidation of the structure of cellulolytic enzyme lignin. Holzforschung 60:389–397

    Article  CAS  Google Scholar 

  16. Pew J, Weyna P (1962) Fine grinding, enzyme digestion and lignin–cellulose bond in wood. Tappi 45:247–256

    CAS  Google Scholar 

  17. Lapierre C, Lallemand JY, Monties B (1982) Evidence of Poplar lignin heterogeneity by combination of 13C and H NMR spectroscopy. Holzforschung 36:275–282

    Article  CAS  Google Scholar 

  18. Schwarz PB, Youngs VL, Shelton DR (1989) Isolation and characterization of lignin from hard red spring wheat bran. Cereal Chem 66:289–295

    CAS  Google Scholar 

  19. Yuan TQ, He J, Xu F, Sun RC (2009) Fractionation and physico-chemical analysis of degraded lignins from the black liquor of Eucalyptus pellita KP-AQ pulping. Polym Degrad Stabil 94:1142–1150

    Article  CAS  Google Scholar 

  20. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP), NREL/TP-510-42618

  21. Wen JL, Xue BL, Xu F, Sun RC (2012) Unveiling the structural heterogeneity of bamboo lignin by in situ HSQC NMR technique. BioEnergy Res 5:886–903

    Article  CAS  Google Scholar 

  22. Xu F, Sun JX, Geng ZC, Liu CF, Ren JL, Sun RC, Fowler P, Baird MS (2007) Comparative study of water-soluble and alkali-soluble hemicelluloses from perennial ryegrass leaves (Lolium peree). Carbohydr Polym 67:56–65

    Article  CAS  Google Scholar 

  23. Shi ZJ, Xiao LP, Deng J, Xu F, Sun RC (2012) Physicochemical characterization of lignin fractions sequentially isolated from bamboo (Dendrocalamus brandisii) with hot water and alkaline ethanol solution. J Appl Polym Sci 125:3290–3301

    Article  CAS  Google Scholar 

  24. Marques AV, Pereira H, Rodrigues J, Meier D, Faix O (2006) Isolation and comparative characterization of Björkman lignin from the saponified cork of Douglas-fir bark. J Anal Appl Pyrolysis 77:169–176

    Article  CAS  Google Scholar 

  25. Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–27

    Article  CAS  Google Scholar 

  26. Xu F, Sun RC, Sun JX, Liu CF, He BH, Fan JS (2005) Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Anal Chim Acta 552:207–217

    Article  CAS  Google Scholar 

  27. Xiao LP, Shi ZJ, Xu F, Sun RC, Mohanty AK (2011) Structural characterization of lignins isolated from Caragana sinica using FT-IR and NMR spectroscopy. Spectrosc Spectr Anal 31:2369–2376

    CAS  Google Scholar 

  28. Wen JL, Sun ZJ, Sun YC, Sun SN, Xu F, Sun RC (2010) Structural characterization of alkali-extractable lignin fractions from bamboo. J Biobased Mater Bioenergy 4:1–18

    Article  Google Scholar 

  29. Capanema EA, Balakshin MY, Kadla JF (2005) Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. J Agric Food Chem 53:9639–9649

    Article  PubMed  CAS  Google Scholar 

  30. Sun XF, Sun RC, Fowler P, Baird MS (2005) Extraction and characterization of original lignin and hemicelluloses from wheat straw. J Agric Food Chem 53:860–870

    Article  PubMed  CAS  Google Scholar 

  31. Önnerud H, Gellerstedt G (2003) Inhomogeneities in chemical structure of hardwood lignins. Holzforschung 57:255–265

    Google Scholar 

  32. Camarero S, Bocchini P, Galletti GC, Martínez AT (1999) Pyrolysis–gas chromatography/mass spectrometry analysis of phenolic and etherified units in natural and industrial lignins. Rapid Commun Mass Spectrom 13:630–636

    Article  CAS  Google Scholar 

  33. del Río JC, Rencoret J, Marques G, Li JB, Gellerstedt G, Jiménez-Barbero J, Martínez ÁT, Gutiérrez A (2009) Structural characterization of the lignin from jute (Corchorus capsularis) fibers. J Agric Food Chem 57:10271–10281

    Article  PubMed  Google Scholar 

  34. Martínez ÁT, Rencoret J, Marques G, Gutiérrez A, Ibarra D, Jiménez-Barbero J, del Río JC (2008) Monolignol acylation and lignin structure in some nonwoody plants: a 2D NMR study. Phytochemistry 69:2831–2843

    Article  PubMed  Google Scholar 

  35. Rencoret J, Marques G, Gutiérrez A, Nieto L, Santos JI, Jiménez-Barbero J, Martínez ÁT, del Río JC (2009) HSQC-NMR analysis of lignin in woody (Eucalyptus globulus and Picea abies) and non-woody (Agave sisalana) ball-milled plant materials at the gel state. Holzforschung 63:691–698

    Article  CAS  Google Scholar 

  36. Xiao LP, Shi ZJ, Xu F, Sun RC (2012) Characterization of MWLs from Tamarix ramosissima isolated before and after hydrothermal treatment by spectroscopical and wet chemical methods. Holzforschung 66:295–302

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from Major State Basic Research Projects of China (973-2010CB732204), the National Natural Science Foundation of China (31260165, 31110103902), Education Department of Yunnan Province, China (2011Z040), and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology (201132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-Cang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, ZJ., Xiao, LP., Deng, J. et al. Isolation and Structural Characterization of Lignin Polymer from Dendrocalamus sinicus . Bioenerg. Res. 6, 1212–1222 (2013). https://doi.org/10.1007/s12155-013-9321-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9321-8

Keywords

Navigation