Skip to main content

Advertisement

Log in

Effects of setup of centralized biogas plants on crop acreage and balances of nutrients and soil humus

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

An increasing number of biogas plants (BGPs) based on digestion of dedicated energy crops have been implemented in Germany. The objectives of this study were to assess the changes in (1) the acreage of different crops (silage maize, cereals, etc.) related to the setup of the BGP, (2) nutrient flows and budgets (N, P, K) due to the implementation of the BGPs, and (3) to assess the effluent N in the overall crop N supply. Data from 14 farmers before the setup of the BGPs were compared with data after implementation. Due to the setup of the BGPs, the acreage of silage maize greatly increased and there were significant negative effects on the weighted soil humus budgets, no effects on the weighted mean N and P budgets, and a negative trend regarding the K budgets. Results concerning the N release from organic manuring to maize crops showed that one third of the farmers considerably over-fertilize maize, indicating an underestimation of short- and long-term N supply of manure N. The implementation of centralized BGPs established very intensive nutrient cycles and, in the long-term higher risks of nutrient losses and environmental pollution are expected. One very effective measure to compensate for negative effects on the soil humus budgets and nitrate leaching is an enlargement of cover cropping, which will also offer economic revenue by providing aboveground biomass for digestion. If the amounts of effluents returned to a single farm or field are not adapted to the nutrient composition of the substrates delivered to the BGP, large nutrient imbalances can result. An effective measure to get a better allocation of the available nutrients is a solid-liquid separation of the effluents, enabling a more targeted allocation of the nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BGP:

Biogas plant.

K:

Potassium.

N:

Nitrogen.

P:

Phosphorus.

References

  • Anonymus (1996) Leitfaden zur Umsetzung der Düngeverordnung in Nordrhein-Westfalen. Landwirtschaftskammern Westfalen-Lippe und Rheinland, Münster und Bonn, 109 pp

  • Asmus F, Linke B, Dunkel H (1988) Eigenschaften und Düngerwirkung von ausgefaulter Gülle aus der Biogasgewinnung, vol 32. Arch. Acker-Pflanzenbau Bodenkd, Berlin, pp 527–532

    Google Scholar 

  • Beckwith CP, Cooper J, Smith KA, Shepherd MA (1998) Nitrate leaching loss following application of organic manures to sandy soils in arable cropping. I. Effects of application time, manure type, overwinter crop cover and nitrification inhibition. Soil Use Manage 14:123–130

    Article  Google Scholar 

  • Breitschuh G, Reinhold G, Breitschuh T (2006) Ökologische Konsequenzen (einschließlich CC) des Anbaus und der Verwendung nachwachsender Biogasrohstoffe. Thüringer Landesanstalt für Landwirtschaft (TLL) Jena-Zwätzen. Available at: http://www.tll.de/ainfo/pdf/bio20206.pdf. Accessed 22 Sept 2008

  • Bussink DW, Oenema O (1998) Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutr Cycl Agroecosys 19:33–51

    Google Scholar 

  • Chambers BJ, Smith KA (1992) Soil mineral nitrogen arising from organic manure applications. Aspects Applied Biol 30:135–143

    Google Scholar 

  • Clemens J, Trimborn M, Weiland P, Amon B (2006) Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric Ecosyst Environ 112:171–177

    Article  CAS  Google Scholar 

  • Eriksen J, Askegaard M, Kristensen K (2004) Nitrate leaching from an organic dairy crop rotation: the effects of manure type, nitrogen input and improved crop rotation. Soil Use Manage 20:48–54

    Article  Google Scholar 

  • Fangueiro D, Pereira J, Coutinho J, Moreira N, Trindade H (2008) NPK farm-gate nutrient balances in dairy farms from Northwest Portugal. Europ J Agron 28:625–634

    Article  CAS  Google Scholar 

  • Fiener P, Auerswald K (2007) Rotation effects of potato, maize, and winter wheat on soil erosion by water. Soil Sci Soc Am J 71:1919–1925

    Article  CAS  Google Scholar 

  • Gutser R, Ebertseder T, Weber A, Schraml M, Schmidhalter U (2005) Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J Plant Nutr Soil Sci 168:439–446

    Article  CAS  Google Scholar 

  • Halberg N (1999) Indicators of resource use and environmental impact for use in a decision aid for Danish livestock farmers. Agric Ecosyst Environ 76:17–30

    Article  Google Scholar 

  • Halberg N, Kristensen ES, Kristensen IS (1995) Nitrogen turnover on organic and conventional mixed farms. J Agric Environ Ethics 8:30–51

    Article  Google Scholar 

  • Herrmann A, Miehe AK, Taube F (2008) Potentielle ökologische Konsequenzen der Biogasproduktion - Monitoring zu Substratanbau und Gärrestverwertung in Schleswig-Holstein. Mitt Ges Pflanzenbauwissenschaften 20:95–96

    Google Scholar 

  • IPCC (2006) 2006 IPCC Guidelines for national greenhouse gas inventories. vol 4. Agriculture, forestry and other land use. Available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html

  • Jarvis SC, Hatch DJ, Roberts DH (1989) The effects of grassland management on nitrogen losses from grazed swards through ammonia volatilization; the relationship to excretal N returns from cattle. J Agric Sci Camb 112:205–216

    Article  Google Scholar 

  • Jensen LS, Pedersen IS, Hansen TB, Nielsen NE (2000) Turnover and fate of 15N-labelled cattle slurry ammonium N applied in the autumn to winter wheat. Eur J Agron 12:23–35

    Article  CAS  Google Scholar 

  • Kirchmann H, Witter E (1992) Composition of fresh, aerobic and anaerobic farm animal dungs. Biores Technol 40:137–142

    Article  CAS  Google Scholar 

  • Körschens M (1987) N-Ausnutzung in Abhängigkeit von mineralischer und organischer N-Düngung im Verlaufe von vier Jahrzehnten im Statischen Düngungsversuch Lauchstädt. Arch. Acker- Pflanzenbau Bodenkd, Berlin 31:161–168

    Google Scholar 

  • Körschens M, Weigel A, Schulz E (1998) Turnover of soil organic matter (SOM) and long-term balances—tools for evaluating sustainable productivity of soils. J Plant Nutr Soil Sci 161:409–424

    Google Scholar 

  • Körschens M, Rogasik J, Schulz E (2004) Humusbilanzierung: Methode zur Beurteilung und Bemessung der Humusversorgung von Ackerland. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten. Available at: http://www.vdlufa.de/joomla/Dokumente/ Standpunkte/08-humusbilanzierung.pdf. Accessed 11 Nov 2006

  • Kruska V, Emmerling Chr (2008) Flächennutzungswandel durch Biogaserzeugung—Regionale und lokale Erhebungen in Rheinland-Pfalz. Naturschutz und Landschaftsplanung 40:69–72

    Google Scholar 

  • LfL (2009) Berechnung des Deckungsbeitrages von Biogas-Mais stehend ab Feld. Institute for rural structural development, business management and agroinformatics. Bayerische Landesanstalt für Landwirtschaft. Available at: http://www.lfl.bayern.de/ilb/db/14249/index.php. Accessed 27 Oct 2009

  • Lindmark-Mansson H, Fondén R, Pettersson HE (2003) Composition of Swedish dairy milk. Intern Dairy J 13:409–425

    Article  CAS  Google Scholar 

  • Mallonée PG, Beede DK, Collier RJ, Wilcox CJ (1985) Production and physiological responses of dairy cows to varying dietary potassium during heat stress. J Dairy Sci 68:1479–1487

    Article  PubMed  Google Scholar 

  • Möller K (2009) Effects of biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems. Nutr Cycl Agroecosyst 84:179–202

    Article  Google Scholar 

  • Möller K, Stinner W (2009) Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Europ J Agron 30:1–16

    Article  Google Scholar 

  • Möller K, Schulz R, Müller T (2010) Substrate inputs, nutrient flows and nitrogen losses of two centralized biogas plants in southern Germany. Nutr Cycl Agroecosyst 87:307–325

    Article  Google Scholar 

  • Murthy GK, Rhea U (1967) Determination of major cations in milk by atomic absorption spectrophotometry. J Dairy Sci 50:313–317

    Article  CAS  PubMed  Google Scholar 

  • Nielsen NE, Jensen HE (1990) Nitrate leaching from loamy soils as affected by crop rotation and nitrogen fertilizer application. Fert Res 26:197–207

    Article  CAS  Google Scholar 

  • Oenema O, Kros H, De Wris W (2003) Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. Eur J Agron 20:3–16

    Article  Google Scholar 

  • Petersen J, Sørensen P (2008) Loss of nitrogen and carbon during storage of the fibrous fraction of separated pig slurry and influence on nitrogen availability. J Agric Sci Camb 146:403–413

    CAS  Google Scholar 

  • Randall GW, Huggins DR, Russelle MP, Fuchs DJ, Nelson WW, Anderson JL (1997) Nitrate losses through subsurface tile drainage in conservation reserve program, alfalfa and row crop systems. J Environ Qual 26:1240–1247

    Article  CAS  Google Scholar 

  • Schmidt T, Gödecke B, Antony F (2007) Wasserschutzwirkung von Agrarumweltmaßnahmen–Statistische Auswertung von Herbst-Nmin-Werten aus Niedersächsischen Wassergewinnungsgebieten. Landbauforschung Völkenrode SH 307:229–252

    CAS  Google Scholar 

  • Schröder JJ, Uenk D, Hilhorst GJ (2007) Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant Soil 299:83–99

    Article  Google Scholar 

  • Schwarz FJ, Heindl U, Kirchgessner M (1995) Gehalte und Ansatz von Mengenelementen in Geweben und im Ganzkörper von wachsenden Jungbullen der Rasse Fleckvieh. Arch Anim Nutr 48:183–199

    Article  CAS  Google Scholar 

  • Smith KA, Beckwith CP, Chalmers AG, Jackson DR (2002) Nitrate leaching following autumn and winter application of animal manures to grassland. Soil Use Manag 18:428–434

    Article  Google Scholar 

  • Sommer SG, Hutchings NJ (2001) Ammonia emissions from field applied manure and its reduction—invited paper. Europ J Agron 15:1–15

    Article  CAS  Google Scholar 

  • Statistisches Bundesamt (2009) Statistisches Jahrbuch 2009. Available at: www.destatis.de. Accessed 13 July 2010

  • Ten Berge HFM, Burgers SLGE, van der Meer HG, Schröder JJ, van der Schoot JR, van Dijk W (2007) Residual inorganic soil nitrogen in grass and maize on sandy soil. Environm Pollution 145:22–30

    Article  CAS  Google Scholar 

  • van Es HM, Sogbedji JM, Schindelbeck RR (2006) Effect of manure application timing, crop, and soil type on nitrate leaching. J Environ Qual 35:670–679

    Article  PubMed  Google Scholar 

  • van Kessel JS, Reeves JB, Meisinger JJ (2000) Nitrogen and carbon mineralization of potential manure components. J Environ Qual 29:1669–1677

    Article  Google Scholar 

  • Warnecke S, Overesch M, Brauckmann HJ, Broll G, Höper H (2008) Auswirkungen des Energiepflanzenanbaus und der Düngung mit Gärresten auf den Kohlenstoffgehalt im Boden—erste Modellierungsergebnisse. Tagungsbeitrag zu: Bodenbiologische Indikatoren für eine nachhaltige Bodennutzung. Berichte der DBG. Available at http://www.dbges.de. Accessed 30 April 2009

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  PubMed  Google Scholar 

  • Wendland M, Diepolder M, Capriel P (2007) Leitfaden für die Düngung von Acker- und Grünland. Bayerische Landesanstalt für Landwirtschaft (LfL) (ed.). LfL-Information. Available at: http://www.lfl.bayern.de/publikationen/daten/informationen/p_24402.pdf. Accessed 24 Feb 2009

  • Wendland M, Offenberger K, Fischer K (2009) Nmin-Gehalte bayerischer Böden im Frühjahr. Available at: http://www.lfl.bayern.de/iab/duengung/mineralisch/28835/index.php. Accessed 2 June 2009

Download references

Acknowledgments

The authors wish to thank 14 farmers for the data provided for present study and E.ON Ruhrgas for the financial support of present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Möller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möller, K., Schulz, R. & Müller, T. Effects of setup of centralized biogas plants on crop acreage and balances of nutrients and soil humus. Nutr Cycl Agroecosyst 89, 303–312 (2011). https://doi.org/10.1007/s10705-010-9395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-010-9395-z

Keywords

Navigation