Skip to main content
Log in

Substrate inputs, nutrient flows and nitrogen loss of two centralized biogas plants in southern Germany

  • Research Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

In Germany, centralized biogas digestion plants (BGP) have been recently constructed. BGPs purchase the substrates from surrounding farmers and, in return, farmers receive the effluents. Substrate inputs, nutrient inputs and outputs were studied for two BGPs with effluent liquid–solid separation. Additionally, the path of the nitrogen (N) during manure handling was assessed. Silage maize (65–75% of the dry matter (DM) inputs) and grass (ca. 20% of the DM inputs) were the main inputs in both BGPs. During manure handling, it is estimated that 20–25% of the N in the effluents was lost via gaseous N emissions. From an environmental point of view the two main challenges are to reduce these gaseous N losses, and to provide N via the effluents mainly for spring manure application, and less so for autumn application. In solid effluents, gaseous N losses during storage are the main potential N loss pathway, whereas for liquid effluents gaseous N losses during and after field spreading are of great relevance. Current management indicated that approximately 50% of the N in the effluents was available for spring application and approximately 30% in autumn due to cleanout of stores before winter. Calculations show that the use of substrates with high DM content during autumn and winter would reduce the demand for storage capacity, thus reducing the demand for store’s cleanout in autumn. This leads to effluents with higher nutrient concentration that are very suitable for application to spring sown crops. Furthermore, some substrates like cereal grains and grass lead to effluents higher in N, whereas silage maize and other substrates lead to effluents low in N. An adapted substrate management would allow more N for spring application. The cycles of P and K are closed, enabling a complete replenishment of the P and K outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BGP:

Biogas digestion plant

C:

Carbon

DM:

Dry matter

FM:

Fresh matter

K:

Potassium

N:

Nitrogen

P:

Phosphorus

References

  • Amon T, Machmüller A, Kryvoruchko V, Milovanovic D, Hrbek R, Eder MW, Stürmer B (2007) Endbericht Forschungsprojekt: Optimierung der Methanausbeute aus Zuckerrüben, Silomais, Körnermais, Sonnenblumen, Ackerfutter, Getreide, Wirtschaftsdünger und Rohglyzerin unter den Standortbedingungen der Steiermark. Available at: http://www.noest.or.at/intern/dokumente/098_ZB_Optimierung_Biogaserzeugung.pdf. Accessed 03 Mar 2009

  • Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 38:560–564

    Article  CAS  Google Scholar 

  • Asmus F, Linke B, Dunkel H (1988) Eigenschaften und Düngerwirkung von ausgefaulter Gülle aus der Biogasgewinnung. Arch Acker Pflanzenbau Bodenkd Berlin 32:527–532

    Google Scholar 

  • Barbarika A, Sikora LJ, Colacicco D (1985) Factors affecting the mineralization of nitrogen in sewage sludge applied to soils. Soil Sci Soc Am J 49:1403–1406

    Article  Google Scholar 

  • Beckwith CP, Lewis PJ, Chalmers AG, Froment MA, Smith KA (1999) Successive annual applications of organic manures for cut grass: short-term observations on utilization of manure nitrogen. Grass Forage Sci 57:191–202

    Google Scholar 

  • Breitschuh G, Reinhold G, Breitschuh T (2006) Ökologische Konsequenzen (einschließlich CC) des Anbaus und der Verwendung nachwachsender Biogasrohstoffe. Thüringer Landesanstalt für Landwirtschaft (TLL) Jena-Zwätzen. Available at: http://www.tll.de/ainfo/pdf/bio20206.pdf. Accessed 22 Sept 2008

  • Chadwick DR (2005) Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering. Atmos Environ 39:787–799

    Article  CAS  Google Scholar 

  • Chadwick DR, Sneath RW, Phillips VR, Pain BF (1999) A UK inventory of nitrous oxide emissions from farmed livestock. Atmos Environ 33:3345–3354

    Article  CAS  Google Scholar 

  • Chambers BJ, Smith KA, Pain BF (2000) Strategies to encourage better use of nitrogen in animal manures. Soil Use Manag 16:157–161

    Google Scholar 

  • Clemens J, Ahlgrimm H-J (2001) Greenhouse gases from animal husbandry: mitigation options. Nutr Cycl Agroecosyst 60:287–300

    Article  Google Scholar 

  • Clemens J, Trimborn M, Weiland P, Amon B (2006) Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric Ecosyst Environ 112:171–177

    Article  CAS  Google Scholar 

  • Cuttle SP, Scholefield D (1995) Management options to limit nitrate leaching from grassland. J Contaminant Hydrol 20:299–312

    Article  CAS  Google Scholar 

  • Dinuccio E, Berg W, Balsari P (2008) Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmos Environ 42:2448–2459

    Article  CAS  Google Scholar 

  • Douglas BF, Magdoff FR (1991) An evaluation of nitrogen mineralization indices for organic residues. J Environ Qual 20:368–372

    Article  Google Scholar 

  • Eghball B, Power JF, Gilley JE, Doran JW (1997) Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure. J Environ Qual 26:189–193

    Article  CAS  Google Scholar 

  • Flachowsky G, Hennig A (1990) Composition and digestibility of untreated and chemically treated animal excreta for ruminants, a review. Biol Wastes 31:17–36

    Article  Google Scholar 

  • Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley, Hoboken, 177 p

  • Gordillo RM, Cabrera ML (1997) Mineralizable nitrogen in broiler litter: I. effect of selected litter chemical characteristics. J Environ Qual 26:1672–1679

    Article  CAS  Google Scholar 

  • Gutser R, Ebertseder T, Weber A, Schraml M, Schmidhalter U (2005) Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J Plant Nutr Soil Sci 168:439–446

    Article  CAS  Google Scholar 

  • Hansen MN, Henriksen K, Sommer SG (2006) Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: effects of covering. Atmos Environ 40:4172–4181

    Article  CAS  Google Scholar 

  • Hecht M (2008) Die Bedeutung des Carbonat-Puffersystems für die Stabilität des Gärprozesses landwirtschaftlicher Biogasanlagen. Ph.D thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

  • Heidenreich T (2006) Berechnung Fugataufkommen von Kofermenten für Biogasanlagen. Available at: http://www.forsten.sachsen.de/de/wu/Landwirtschaft/lfl/inhalt/11364.htm. Accessed 10 June 2009

  • Herrmann A, Miehe AK, Taube F (2008) Potentielle ökologische Konsequenzen der Biogasproduktion - Monitoring zu Substratanbau und Gärrestverwertung in Schleswig-Holstein. Mitt Ges Pflanzenbauwissenschaften 20:95–96

    Google Scholar 

  • IPCC (2000) IPCC good practice guidance and uncertainty management in national greenhouse gas inventories. Available at: http://www.ipcc-nggip.iges.or.jp/public/gp/english/index.html

  • IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Volume 4: agriculture, forestry and other land use. Available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html

  • Kirchmann H, Witter E (1992) Composition of fresh, aerobic and anaerobic farm animal dungs. Bioresour Technol 40:137–142

    Article  CAS  Google Scholar 

  • Kluge R, Wagner W, Mokry M, Dederer M, Messner J, Haber N (2008) Abschlussbericht des Projektes Inhaltsstoffe von Gärprodukten und Möglichkeiten zu ihrer geordneten landwirtschaftlichen Verwertung. Available at: http://www.landwirtschaft-mlr.baden-wuerttemberg.de/servlet/PB/show/1235603_l1/ltz_Projektbericht:Inhaltsstoffe von Gärprodukten und Möglichkeiten zu ihrer geordneten Verwertung.pdf. Accessed 04 Feb 2009

  • Koriath H, Herrmann V, Vollmer GR, Franz J (1985) Nährstoffdynamik während der anaeroben Fermentation von Gülle und Wirkung auf den Ertrag und Inhaltsstoffe von Mais im Gefäßversuch. Arch Acker u Pflanzenbau u Bodenkd 29:741–747

    Google Scholar 

  • Körschens M (1987) N-Ausnutzung in Abhängigkeit von mineralischer und organischer N-Düngung im Verlaufe von vier Jahrzehnten im Statischen Düngungsversuch Lauchstädt. Arch Acker Pflanzenbau Bodenkd Berlin 31:161–168

    Google Scholar 

  • Koster IW, Lettinga G (1988) Anaerobic digestion at extreme ammonia concentrations. Biol Wastes 25:51–59

    Article  CAS  Google Scholar 

  • Kroiss H, Plahl-Wabnegg F (1983) Sulfide toxicity with anaerobic wastewater treatment. In: Van der Brink WJ (ed) Proceedings of the European symposium on anaerobic waste water treatment, Noordwijkerhout. TNO Corporate Communication Department, The Hague, pp 72–85

  • Külling DR, Menzi H, Sutter F, Lischer P, Kreuzer M (2003) Ammonia, nitrous oxide and methane emissions from differently stored dairy manure derived from grass- and hay-based rations. Nutr Cycl Agroecosyst 65:13–22

    Article  Google Scholar 

  • Kyvsgaard P, Sørensen P, Møller E, Magid J (2000) Nitrogen mineralization from sheep faeces can be predicted from the apparent digestibility of the feed. Nutr Cycl Agroecosyst 57:207–214

    Article  Google Scholar 

  • Larney FJ, Buckley KE, Hao X, McCaughey WP (2006) Fresh, stockpiled, and composted beef cattle feedlot manure: nutrient levels and mass balance estimates in Alberta and Manitoba. J Environ Qual 35:1844–1854

    Article  PubMed  CAS  Google Scholar 

  • Leible L, Arlt A, Fürniß B, Kälber S, Kappler G, Lange S, Nieke E, Rösch C, Wintzer D (2003) Energie aus biogenen Rest- und Abfallstoffen. Bereitstellung und energetische Nutzung organischer Rest- und Abfallstoffe sowie Nebenprodukte als Einkommensalternative für die Land- und Forstwirtschaft - Möglichkeiten, Chancen und Ziele. Available at: http://www.itas.fzk.de/dez/lit/2003/leua03a.pdf. Accessed 23 Feb 2009

  • Levi-Minzi R, Riffaldi R, Saviozzi A (1990) Carbon mineralization in soil amended with different organic materials. Agric Ecosyst Environ 31:325–335

    Article  CAS  Google Scholar 

  • LfL (2009) Berechnung des Deckungsbeitrages von Biogas-Mais stehend ab Feld. Institute for Rural Structural Development, Business Management and Agroinformatics. Bayerische Landesanstalt für Landwirtschaft. Available at: http://www.lfl.bayern.de/ilb/db/14249/index.php. Accessed 27 Oct 2009

  • Lupwayi NZ, Haque I (1998) Mineralization of N, P, K, Ca and Mg from Sesbania and Leucaena leaves varying in chemical composition. Soil Biol Biochem 30:337–343

    Article  CAS  Google Scholar 

  • McCarty PL (1964) Anaerobic waste treatment fundamentals. Public Works 95:91–126

    CAS  Google Scholar 

  • McCrory DF, Hobbs PJ (2001) Additives to reduce ammonia and odor emissions from livestock wastes: a review. J Environ Qual 30:345–355

    Article  PubMed  CAS  Google Scholar 

  • Möller K, Stinner W (2009) Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur J Agron 30:1–16

    Article  CAS  Google Scholar 

  • Möller K, Stinner W, Deuker A, Leithold G (2008) Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutr Cycl Agroecosyst 82:209–232

    Article  Google Scholar 

  • Müller T, Jensen LS, Nielsen NE, Magid J (1998) Turnover of carbon and nitrogen in a sandy loam soil following incorporation of chopped maize plants, barley straw and blue grass in the field. Soil Biol Biochem 30:561–571

    Article  Google Scholar 

  • Paillat J-M, Robin P, Hassouna M, Leterme P (2005) Predicting ammonia and carbon dioxide emissions from carbon and nitrogen biodegradability during animal waste composting. Atmos Environ 39:6833–6842

    Article  CAS  Google Scholar 

  • Paul JW, Dinn NE, Kannangara T, Fisher LJ (1998) Protein content in dairy cattle diets affects ammonia losses and fertiliser nitrogen value. J Environ Qual 27:528–534

    Article  CAS  Google Scholar 

  • Petersen J, Sørensen P (2008) Loss of nitrogen and carbon during storage of the fibrous fraction of separated pig slurry and influence on nitrogen availability. J Agric Sci 146:403–413

    Article  CAS  Google Scholar 

  • Petersen SO, Lind A-M, Sommer SG (1998) Nitrogen and organic matter losses during storage of cattle and pig manure. J Agric Sci 130:69–79

    Article  Google Scholar 

  • Pfundtner E (2008) Nährstoff- und Humuswirkung von Gärresten aus Biogasanlagen. In: Arbeitsgemeinschaft für Lebensmittel- Veterinär- und Agrarwesen (ed) Proceedings ALVA-Jahrestagung 2008, Gumpenstein, Austria, 26. and 27. May 2008. Available at: http://www.alva.at/Seiten/Publikationen/Tagungsband_2008.pdf. Accessed 24 Sept 2008, pp 131–133

  • Powell JM, Wattiaux MA, Broderick GA, Moreira VR, Casler MD (2006) Dairy diet impacts on fecal chemical properties and nitrogen cycling in soils. Soil Sci Soc Am J 70:786–794

    Article  CAS  Google Scholar 

  • Reinertsen SA, Elliott LF, Cochran VL, Campbell GS (1984) Role of available carbon and nitrogen in determining the rate of wheat straw decomposition. Soil Biol Biochem 16:459–464

    Article  CAS  Google Scholar 

  • Reinhold G (2006) Masse- und Trockensubstanzbilanz in landwirtschaftlichen Biogasanlagen. Available at: http://www.dlv.de/grafiken/1700/Biogasgewicht3.pdf. Accessed 28 Apr 2009

  • Reinhold G, Klimanek E-M, Breitschuh G (1991) Zum Einfluss der Biogaserzeugung auf Veränderungen in der Kohlenstoffdynamik von Gülle. Arch Acker Pflanzenbau Bodenkd 35:129–137

    CAS  Google Scholar 

  • Saviozzi A, Levi-Minzi R, Riffaldi R (1993) Mineralization parameters from organic materials added to soil as a function of their chemical composition. Bioresour Technol 45:131–135

    Article  CAS  Google Scholar 

  • Schröder JJ, Uenk D, Hilhorst GJ (2007) Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant Soil 299:83–99

    Article  CAS  Google Scholar 

  • Sensel K, Ellmer F (2007) Gärrückstände aus der Erzeugung von Biogas mit Energiepflanzen - Stoffkenngrößen und Variabilität. Mitt. Ges. Pflanzenbauwiss. 19, 204-205. http://www.gpw.uni-bonn.de/pdf/publikation/Tagungsband202007_Homepage.pdf. Accessed 23 Sept 2008

  • Sensel K, Wragge V (2008) Pflanzenbauliche Verwertung von Gärrückständen aus Biogasanlagen unter besonderer Berücksichtigung des Inputsubstrats Energiepflanzen. Available at: http://www.fnr-server.de/ftp/pdf/berichte/22012105.pdf. Accessed 9 Mar 2009

  • Serna MD, Pomares F (1991) Comparison of biological and chemical methods to predict nitrogen mineralization in animal wastes. Biol Fertil Soils 12:89–94

    Article  CAS  Google Scholar 

  • Smith KA, Chambers BJ (1993) Utilizing the nitrogen content of organic manures on farms-problems and practical solutions. Soil Use Manag 9:105–112

    Article  Google Scholar 

  • Sommer SG, Hutchings N (1995) Techniques and strategies for the reduction of ammonia emission from agriculture. Water Air Soil Pollut 85:237–248

    Article  CAS  Google Scholar 

  • Sommer SG, Hutchings NJ (2001) Ammonia emissions from field applied manure and its reduction—invited paper. Eur J Agron 15:1–15

    Article  CAS  Google Scholar 

  • Sommer SG, Møller HB (2000) Emission of greenhouse gases during composting of deep litter from pig production—effect of straw content. J Agric Sci 134:327–335

    Article  Google Scholar 

  • Sommer SG, Jensen LS, Clausen SB, Søgaard HT (2006) Ammonia volatilization from surface-applied livestock slurry as affected by slurry composition and slurry infiltration depth. J Agric Sci 144:229–235

    Article  CAS  Google Scholar 

  • Thorman RE, Chadwick DR, Harrison R, Boyles LO, Matthews R (2007) The effect on N2O emissions of storage conditions and rapid incorporation of pig and cattle farmyard manure into tillage land. Biosyst Eng 97:501–511

    Article  Google Scholar 

  • Tiquia SM, Richard TL, Honeyman MS (2002) Carbon, nutrient and mass loss during composting. Nutr Cycl Agroecosyst 62:15–24

    Article  CAS  Google Scholar 

  • van Kessel JS, Reeves JB, Meisinger JJ (2000) Nitrogen and carbon mineralization of potential manure components. J Environ Qual 29:1669–1677

    Article  Google Scholar 

  • Vogt R (2008) Basisdaten zu THG-Bilanzen für Biogas-Prozessketten und Erstellung neuer THG-Bilanzen. Available at: http://www.ifeu.de/oekobilanzen/pdf/THG_Bilanzen_Bio_Erdgas.pdf. Accessed 23 Oct 2008

  • Weiland P (2006) Stand der Technik von Biogasanlagen und aktueller Forschungsbedarf. Available at: http://www.zukuenftig-bioenergie.de/download/ergebnisse_husum/Stand_der_Technik_BGA_ WEILAND.pdf. Accessed 1 July 2009

  • Wendland M, Diepolder M, Capriel P (2007) Leitfaden für die Düngung von Acker- und Grünland. Bayerische Landesanstalt für Landwirtschaft (LfL) (ed.). LfL-Information. Available at: http://www.lfl.bayern.de/publikationen/daten/informationen/p_24402.pdf. Accessed 24 Feb 2009

  • Wragge V, Ellmer F (2007) Rückstände aus der Biogaserzeugung als Düngemittel bei Sommerweizen. Mitt. Ges. Pflanzenbauwiss. 19, S. 206-207. http://www.gpw.uni-bonn.de/pdf/publikation/Tagungsband2007_Homepage.pdf. Accessed 23 Sept 2008

  • Wulf S, Maeting M, Clemens J (2002) Application technique and slurry cofermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: I. ammonia volatilization. J Environ Qual 31:1789–1794

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Möller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möller, K., Schulz, R. & Müller, T. Substrate inputs, nutrient flows and nitrogen loss of two centralized biogas plants in southern Germany. Nutr Cycl Agroecosyst 87, 307–325 (2010). https://doi.org/10.1007/s10705-009-9340-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-009-9340-1

Keywords

Navigation