Skip to main content

Advertisement

Log in

Prospects for Hybrid Breeding in Bioenergy Grasses

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Biofuels obtained from biomass have the potential to replace a substantial fraction of petroleum-based hydrocarbons that contribute to carbon emissions and are limited in supply. With the ultimate goal to maximize biomass yield for biofuel production, this review aims to evaluate prospects of different hybrid breeding schemes to optimally exploit heterosis for biomass yield in perennial ryegrass (Lolium perenne L.) and switchgrass (Panicum virgatum), two perennial model grass species for bioenergy production. Starting with a careful evaluation of current population and synthetic breeding methods, we address crucial topics to implement hybrid breeding, such as the availability and development of heterotic groups, as well as biological mechanisms for hybridization control such as self-incompatibility (SI) and male sterility (MS). Finally, we present potential hybrid breeding schemes based on SI and MS for the two bioenergy grass species, and discuss how molecular tools and synteny can be used to transfer relevant information for genes controlling these biological mechanisms across grass species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Coyle W (2006) The future of biofuels. Pacific Food System Outlook 2006–2007. Pacific Economic Cooperation Council

  2. McLaughlin SB, Kszos LA (2005) Development of Switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535

    Article  Google Scholar 

  3. Walsh ME, De la Torre D, Shapouri H, Slinsky S (2003) Bioenergy crop production in the United States. Environ Resour Econ 24:313–333

    Article  Google Scholar 

  4. Somers DJ, Kirkpatrick R, Moniwa M, Walsh A (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 46(3):431–437

    Article  PubMed  CAS  Google Scholar 

  5. Shepherd P (2000) National renewable energy laboratory: developing bioenergy fuels. Biopower FactSheet 2

  6. Kszos LA, Downing ME, Wright LL, Cushman JH, McLaughlin SB, Tolbert VR et al (2000) Bioenergy Feedstock Development Program Status Report (trans: Laboratory ORN). Department of Energy, Tennessee

    Google Scholar 

  7. McLaughlin SB, Walsh ME (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenergy 14(4):317–324

    Article  CAS  Google Scholar 

  8. Lewandowski I, Scurlock J, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Article  Google Scholar 

  9. Searchinger T (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238

    Article  PubMed  CAS  Google Scholar 

  10. de Nettancourt D (1997) Incompatibility in amgiosperms. Sex Plant Reprod 10:185–199

    Article  Google Scholar 

  11. Martinez-Reyna JM, Vogel KP (2008) Heterosis in Switchgrass: spaced plants. Crop Sci 48:1312–1320

    Article  Google Scholar 

  12. Vogel K, Mitchell R (2008) Heterosis in Switchgrass: biomass yield in Swards. Crop Sci 48:2159–2164

    Article  Google Scholar 

  13. Posselt U (ed) (2010) Identification of heterotic pattermd in perennial ryegrass. Sustainable use of genetic diversity in forage and turf breeding. Springer, New York

    Google Scholar 

  14. Posselt UK (2003) Heterosis in grasses. Czech J Genet Plant Breed 39:48–53

    Google Scholar 

  15. Boller BSF, Streckeisen P, Baert J, Bayle B, Bourdon P, Chosson J-F et al (2003) The EUCARPIA multisite rust evaluation—results 2001. Pflanzenzüchg 59:198–207

    Google Scholar 

  16. Foster C (1971) Interpopulation and intervarietal hybridization in Lolium perenne breeding: heterosis under non-competitive conditions. J Agric Sci 76:107–130

    Article  Google Scholar 

  17. Esparza Martínez JH, Foster AE (1998) Genetic analysis of heading date and other agronomic characters in barley (Hordeum vulgare L.). Euphytica 99(3):145–153

    Article  Google Scholar 

  18. Yang B, Thorogood D, Armstead I, Barth S (2008) How far are we from unravelling self-incompatibility in grasses. New Phytologist. doi:10.1111/j.1469-8137.2008.02421.x

  19. Klaas M, Yang B, Bosch M, Thorogood D, Manzanares C, Armstead IP et al (2011) Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. Ann Bot. doi:10.1093/aob/mcr186

  20. Geiger HH, Miedaner T (2009) Rye breeding. In: Carena MJ (ed) Cereals, vol 3. Springer, New York, pp 157–181

    Chapter  Google Scholar 

  21. Laughnan JR (1983) Cytoplasmic male sterility in maize. Annu Rev Genet 17(1):27

    Article  PubMed  CAS  Google Scholar 

  22. Bennetzen JL, Freeling M (1993) Grasses as a single genetic system—genome composition, colinearity and compatibility. Plant Cell 12:1021–1029

    Article  Google Scholar 

  23. Devos KM (1997) Comparative genetics in the grasses. Plant Mol Biol 35(1):3

    Article  PubMed  CAS  Google Scholar 

  24. Gale MD (1998) Plant comparative genetics after 10 years. Science 282(5389):656

    Article  PubMed  CAS  Google Scholar 

  25. Devos KM (2000) Genome relationships: the grass model in current research. Plant Cell 12(5):637

    Article  PubMed  CAS  Google Scholar 

  26. Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89(1):3–10

    Article  PubMed  CAS  Google Scholar 

  27. Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8(2):155–162

    Article  PubMed  CAS  Google Scholar 

  28. Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154(1):15

    Article  CAS  Google Scholar 

  29. Salse J (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20(1):11

    Article  PubMed  CAS  Google Scholar 

  30. Bolot S (2009) The ‘inner circle’of the cereal genomes. Curr Opin Plant Biol 12(2):119

    Article  PubMed  CAS  Google Scholar 

  31. Donnison I, Farrar K, Allison GG, Hodgson E, Adams J, Hatch R et al (2009) Functional genomics of forage and bioenergy quality traits in the grasses. In: Yamada TSG (ed) Molecular breeding of forage and turf. Springer, New York

    Google Scholar 

  32. Farrar K, Asp T, Lübberstedt T, Xu ML, Thomas AM, Christiansen C et al (2007) Construction of two Lolium perenne BAC libraries and identification of BACs containing candidate genes for disease resistance and forage quality. Mol Breed 19(1):15–23

    Article  CAS  Google Scholar 

  33. Studer B, Kölliker R, Muylle H, Torben A, Frei U, Roldán-Ruiz I, Barre P, Tomaszewski C, Meally H, Barth S, Skøt L, Armstead I, Dolstra O, Lübberstedt T (2010) EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.). BMC Plan Biology. doi:10.1186/1471-2229-10-177

  34. Martinez-Reyna JM, Vogel KP (2002) Incompatibility sy stems in Switchgrass. Crop Sci 42:1800–1805

    Article  Google Scholar 

  35. Cornish MA, Hayward MD, Lawrence MJ (1979) Self-incompatibility in Ryegrass. Heredity 43(1):129–136

    Article  Google Scholar 

  36. Fearon CH, Hayward MD, Lawrence MJ (1984) Self-incompatibility in Ryegrass VII. The determination of incomaptibility genotypes in autotetraploids families of Lolium perenne L. Heredity 53:403–413

    Article  Google Scholar 

  37. Casler M, Brummer C (2008) Theoretical expected genetic gains for among-and-within-family selection methods in perennial forage crops. Crop Sci 48:890–902

    Article  Google Scholar 

  38. Casler M (2001) Breeding forage crops for increased nutritional value. Adv Agron 71(51–107)

    Google Scholar 

  39. Humphreys MO (1997) The contribution of conventional plant breeding to forage crop improvement. Proceedings of the 18th International Grassland Congress. Association Management Centre, Calgary

  40. Reich V, Atkins R (1970) Yield stability of four population types of grain sorghum, Sorghum bicolor (L.) Moench in different environments. Crop Sci 10:511–517

    Article  Google Scholar 

  41. Haussmann BIG (2000) Yield and yield stability of four population types of grain sorghum in a semi-arid area of Kenya. Crop Sci 40(2):319

    Google Scholar 

  42. Stelling D (1994) Yield stability in Faba Bean, Vicia faba L. 2. Effects of heterozygosity and heterogeneity. Plant Breed 112(1):30

    Article  Google Scholar 

  43. Einfeldt C (1999) Effects of heterozygosity and heterogeneity on yield and yield stability of barley in the dry areas of North Syria. University of Hohenheim, Stuttgart

    Google Scholar 

  44. Posselt U (2010) Breeding methods in cross-pollinated species. In: Boller B (ed) Fodder crops and amenity grasses. Springer, New York, pp 39–87

    Chapter  Google Scholar 

  45. Kolliker R, Boller B, Widmer F (2005) Marker assisted polycross breeding to increase diversity and yield in perennial ryegrass (Lolium perenne L.). Euphytica 146:55–65

    Article  Google Scholar 

  46. Lamkey KR, Edwards JW (1999) Quantitative genetics of heterosis. In: Coors JG, Pandey S (eds) Genetics and exploitation of heterosis in crops. ASA and CSSA, Madison

    Google Scholar 

  47. Breese EL (1981) Interspecies hybrids and polyploidy. Philos Trans R Soc Biol Sci 292(1062):487

    Article  Google Scholar 

  48. Zeven AC (1980) Polyploidy and plant domestication. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum, New York, pp 385–408

    Google Scholar 

  49. Dewey DR (1980) Some applications and misapplications of induced polyploidy to plant breeding. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum, New York, pp 445–470

    Google Scholar 

  50. Hallauer AR, Carena MJ, Miranda JB (2010) Quantitative genetics in maize breeding. Springer, New York

    Google Scholar 

  51. Lubberstedt T, Melchinger AE, Dußle C, Vuylsteke M, Kuiper M (2000) Relationships among Early European maize inbreds: IV. Genetic diversity revealed with AFLP markers and comparison with RFLP, RAPD, and pedigree data. Crop Sci 40(3):783–791. doi:10.2135/cropsci2000.403783x

    Article  CAS  Google Scholar 

  52. Kubik C, Sawkins M, Meyer WA, Gaut BS (2001) Genetic diversity in seven perennial ryegrass (Lolium perenne L.) Cultivars based on SSR markers. Crop Sci 41:1565–1572

    Article  CAS  Google Scholar 

  53. Kopecký D (2009) Development and mapping of DArT markers within the FestucaLolium complex. BMC Genomics 10(1):473

    Article  PubMed  Google Scholar 

  54. Kopecky D, Bartos J, Christelova P, Cernoch V, Kilian A, Dolezel J (2011) Genomic constitution of Festuca × Lolium hybrids revealed by the DArTFest array. Theor Appl Genet 122:355–363

    Article  PubMed  Google Scholar 

  55. Kölliker R (1999) Genetic variability of forage grass cultivars: a comparison of Festuca pratensis Huds., Lolium perenne L., and Dactylis glomerata L. Euphytica 106(3):261

    Article  Google Scholar 

  56. Bolaric S, Barth S, Melchinger AE, Posselt UK (2005) Molecular genetic diversity within and among German ecotypes in comparison to European perennial ryegrass cultivars. Plant Breed 124(3):257–262

    Article  CAS  Google Scholar 

  57. Brazauskas G (2011) Nucleotide diversity and linkage disequilibrium in five Lolium perenne genes with putative role in shoot morphology. Plant Sci 179(3):194

    Article  Google Scholar 

  58. Hultquist AA, Vogel KP, Lee DJ, Arumuganathanm K, Kaeppler S (1996) Chloroplast DNA and nuclear DNA content variations and nuclear DNA content variations among cultivars of switchgrass populations. Crop Science 36:1049–1052

    Google Scholar 

  59. Lundqvist A (1962) The Nature of the two-loci incompatibility system in grasses. Hereditas 48(1–2):153

    Google Scholar 

  60. Thorogood D, Armstead I, Turner LB, Humphreys MO, Hayward MD (2005) Identification and mode of action of self-compatibility loci in Lolium perenne L. Heredity 94:356–363

    Article  PubMed  CAS  Google Scholar 

  61. Van Daele I (2008) Identification of transcribed derived fragments involved in self-incompatibility in perennial ryegrass (Lolium perenne L.) using cDNA-AFLP. Euphytica 163(1):67

    Article  CAS  Google Scholar 

  62. Yang B, Thorogood D, Armstead I, Franlin FC, Barth S (2009) Identification of genes expressed duting the self-incompatibility response in perennial rygrass (Lolium perenne). Plant Mol Biol 70:709–723

    Article  PubMed  CAS  Google Scholar 

  63. Hackauf B, Wehling P (2005) Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics. Theor Appl Genet 110(5):832–845

    Article  PubMed  CAS  Google Scholar 

  64. Shinozuka H, Cogan N, Smith K, Spangenberg G, Forster J (2009) Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). Plant Mol Biol 72(3):343–355

    Article  PubMed  Google Scholar 

  65. Wilkins P, Thorogood D (1992) Breakdown of self-incompatibility in perennial ryegrass at high temperature and its uses in breeding. Euphytica 64:65–69

    Google Scholar 

  66. Nielsen E (1944) Analysis of variation in Panicum virgatum. J Agric Res 69(327–353)

    Google Scholar 

  67. Missaoui AM (2005) Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markers. Theor Appl Genet 110(8):1372

    Article  PubMed  CAS  Google Scholar 

  68. Okada M (2010) Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics 185(3):745

    Article  PubMed  CAS  Google Scholar 

  69. Wit F (1974) Cytoplasmic male sterility in ryegrasses (Lolium SPP.) detected after intergeneric hybridization. Euphytica 23(1):31–38

    Article  Google Scholar 

  70. Vogel KP, Lamb J (2007) Forage breeding. In: Forages: the science of grassland agriculture. Blackwell: London. pp 427–438

  71. Fehr W (1993) Principles of cultivar development, vol. 1. Macmillan, New York

    Google Scholar 

  72. Palmer RG, Alberten MC, Horner HT, Skorupska H (1992) Male sterility in soybean and maize: developmental comparison. Nucleus 35(1):1–18

    Google Scholar 

  73. Kiang A, Connolly V, McDonnell D, Kavanagh T (1993) Cytoplasmic male sterility (CMS) in Lolium perenne L. 1. Development as a diagnostic probe for the male-sterile cytoplasm. Theor Appl Genet 86:781–787

    Article  Google Scholar 

  74. Kiang AS, Kavanagh TA (1996) Cytoplasmic male sterility (CMS) in Lolium perenne L. 2. The mitochondrial genome of a CMS line is rearranged and contains a chimaeric atp 9 gene. Theor Appl Genet 92(3):308–315

    Article  CAS  Google Scholar 

  75. McDermott P (2008) The mitochondrial genome of a cytoplasmic male sterile line of perennial ryegrass (Lolium perenne L.) contains an integrated linear plasmid-like element. Theor Appl Genet 117(3):459

    Article  PubMed  CAS  Google Scholar 

  76. Ruge B, Linz A, Gaue I, Baudis H, Leckband G, Wehling F (2002) Molecular characterization of cytoplasmic male sterility in Lolium perenne. In: Braunschweig-FAL (ed) Proc. 24th EUCARPIA Fodder crops and amenity grasses section meeting, vol 59. Vortr. Pfl.-Züchtg, pp 121–127

  77. Moore ERB (1997) 16S rRNA gene sequence analyses and inter-and intrageneric relationships of Xanthomonas species and Stenotrophomonas maltophilia. FEMS Microbiol Lett 151(2):145

    Article  PubMed  CAS  Google Scholar 

  78. Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear interactions. Trends Genet 23(2):81

    Article  PubMed  CAS  Google Scholar 

  79. Choi IY (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176(1):685

    Article  PubMed  CAS  Google Scholar 

  80. Gabay-Laughnan S, Kuzmin EV, Monroe JM, Roark LM, Newton KJ (2009) Characterization of a novel thermo-sensitive restorer of fertility for CMS-S in maize. Genetics. doi:10.1534/genetics.108.099895

  81. Cui X (1996) The rf 2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272(5266):1334

    Article  PubMed  CAS  Google Scholar 

  82. Burton GW (1948) The performance of various mixtures of hybrid and parent inbred pearl millet. J Amer Soc Agron 40:908–915

    Article  Google Scholar 

  83. Brummer EC (1999) Capturing heterosis in forage crop cultivar development. Crop Sci 39(4)

  84. Van Daele I (2008) Mapping of markers related to self-incompatibility, disease resistance, and quality traits in Lolium perenne L. Genome 51(8):644

    Article  PubMed  Google Scholar 

  85. Todd J, Wu Y, Goad C (2011) Switchgrass selfing confirmed by SSR markers. 2011 International Annual Meetings. ASA CSSA SSSA, San Antonio

    Google Scholar 

  86. Thorogood D, Hayward MD (1991) The genetic control of self-compatibility in an inbred line of Lolium perenne L. Heredity 67:175–181

    Article  Google Scholar 

  87. Thorogood D, Hayward MD (1992) Self-compatibility in Lolium temulentum L: its genetic control and transfer into L. perenne L. ans L. multiflorim Lam. Heredity 68:71–78

    Article  Google Scholar 

  88. Wricke G (1978) Pseudo-Selbstkompatibilität beim Roggen und ihre Ausnutzung in der Züchtung. Z Pflanzenzuecht 81:140–148

    Google Scholar 

  89. Boelt B, Studer B (eds) (2009) Breeding for grasses seed yield. Fodder crops and amenity grasses. Springer, New York

    Google Scholar 

  90. Duvick DN (1959) The use of cytoplasmic male-sterility in hybrid seed production. Econ Bot 13(3):167

    Article  Google Scholar 

  91. Connolly V, Wright-Turner R (1984) Induction of cytoplasmic male-sterility into ryegrass (Lolium perenne). Theor Appl Genet 68:229–453

    Article  Google Scholar 

  92. McLaughlin SB (2002) High-value renewable energy from prairie grasses. Environ Sci Technol 36(10):2122

    Article  PubMed  CAS  Google Scholar 

  93. Perrin R (2008) Farm-scale production cost of switchgrass for biomass. BioEnergy Res 1(1):91

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. UK Posselt (Universität Hohenheim) for his insight regarding some points in this review. We also want to thank the RF Baker Center for Plant Breeding (Iowa State University) that supports Andrea Arias Aguirre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Arias Aguirre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arias Aguirre, A., Studer, B., Frei, U. et al. Prospects for Hybrid Breeding in Bioenergy Grasses. Bioenerg. Res. 5, 10–19 (2012). https://doi.org/10.1007/s12155-011-9166-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9166-y

Keywords

Navigation