Skip to main content
Log in

Genomic constitution of Festuca × Lolium hybrids revealed by the DArTFest array

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Complementary attributes of Festuca and Lolium grasses can be combined in hybrid cultivars called Festuloliums, which are becoming increasingly popular fodder crops and amenity plants. Genomic constitution of commercially available Festuloliums was reported to vary from almost equal representation of parental genomes to apparent lack of one of them based on molecular cytogenetic analyses and screening with a small set of DNA markers, both approaches with limited resolution. Here, we describe the use of the DArTFest array comprising 3,884 polymorphic DArT markers for characterization of genomes in five Festulolium cultivars. In any of the cultivars, the minimum number of informative markers, which discriminated the parental Lolium and Festuca genomes was 361 and 171, respectively. Using the DArTFest array, it was possible to determine hybrid genome constitution at resolution which has never been achieved before and the analysis of a set of randomly selected plants from each cultivar provided information on genetic structure of outcrossing Festulolium cultivars. In addition to a core set of markers typical for each hybrid cultivar, markers occurring at low frequency among the plants within each cultivar were identified. Biological significance of genomic loci associated with the rare markers is yet to be determined. Finally, with the aim to simplify the use of DArTFest arrays to characterize Festuca × Lolium hybrids, various bulking strategies were compared. While all bulks were suitable for identification of hybrids, only bulks of few plants have been found to reveal the rare markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141

    Article  CAS  PubMed  Google Scholar 

  • Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli OA (2003) A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor Appl Genet 108:25–40

    Article  CAS  PubMed  Google Scholar 

  • Buckner RC, Burrus PB, Bush LP (1977) Registration of Kenhy tall fescue. Crop Sci 17:672–673

    Article  Google Scholar 

  • Cai X, Jones S (1997) Direct evidence for high level of autosyndetic pairing in hybrids of Thinopyrum intermedium and Th-ponticum with Triticum aestivum. Theor Appl Genet 95:568–572

    Article  Google Scholar 

  • Felsenstein J (1989) PHYLIP-phylogeny inference package (Version 3.2). Cladistics, pp 164–166

  • Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) (3.6). University of Washington, Seattle

  • Fjellheim S, Rognli OA (2005) Genetic diversity within and among Nordic meadow fescue (Festuca pratensis Huds.) cultivars determined on the basis of AFLP markers. Crop Sci 45:2081–2086

    Article  CAS  Google Scholar 

  • Fjellheim S, Rognli OA, Fosnes K, Brochmann C (2006) Recent bottlenecking in the widespread meadow fescue (Festuca pratensis Huds.) inferred from chloroplast DNA sequences. J Biogeogr 33:1470–1478

    Article  Google Scholar 

  • Fojtik A (1994) Methods of grass improvement used at the Plant Breeding Station Hladké Životice. Genet Pol 35A:25–31

    Google Scholar 

  • Guthridge KM, Dupal MP, Kolliker R, Jones ES, Smith KF, Forster JW (2001) AFLP analysis of genetic diversity within and between populations of perennial ryegrass (Lolium perenne L.). Euphytica 122:191–201

    Article  CAS  Google Scholar 

  • Inoue M, Gao ZS, Hirata M, Fujimori M, Cai HW (2004) Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam.) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome 47:57–65

    Article  CAS  PubMed  Google Scholar 

  • Iovene M, Barone A, Frusciante L, Monti L, Carputo D (2004) Selection for aneuploid potato hybrids combining a low wild genome content and resistance traits from Solanum commersonii. Theor Appl Genet 109:1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  CAS  PubMed  Google Scholar 

  • Jauhar PP (1993) Cytogenetics of the Festuca-Lolium complex. Relevance to breeding. Monographs on theoretical and applied genetics, vol 18. Springer, Berlin, p 255

    Google Scholar 

  • Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW (2002) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584

    Article  CAS  PubMed  Google Scholar 

  • Kolliker R, Stadelmann FJ, Reidy B, Nosberger J (1999) Genetic variability of forage grass cultivars: a comparison of Festuca pratensis Huds., Lolium perenne L., and Dactylis glomerata L. Euphytica 106:261–270

    Article  Google Scholar 

  • Kopecký D, Lukaszewski AJ, Doležel J (2005) Genomic constitution of Festulolium cultivars released in the Czech Republic. Plant Breed 124:454–458

    Article  Google Scholar 

  • Kopecký D, Loureiro J, Zwierzykowski Z, Ghesquiere M, Dolezel J (2006) Genome constitution and evolution in Lolium × Festuca hybrid cultivars (Festulolium). Theor Appl Genet 113:731–742

    Article  PubMed  Google Scholar 

  • Kopecký D, Bartoš J, Lukaszewski AJ, Baird JH, Černoch V, Kölliker R, Rognli OA, Blois H, Caig V, Lübberstedt T, Studer B, Shaw B, Doležel J, Kilian A (2009) Development and mapping of DArT markers within the Festuca-Lolium complex. BMC Genomics 10:473

    Article  PubMed  Google Scholar 

  • Lewis EJ, Tyler BF, Chorlton KH (1973) Development of Lolium-Festuca hybrids. Annual Report of the Welsh Plant Breeding Station for 1972, pp 34–37

  • Lukaszewski AJ, Lapiński B, Rybka K (2005) Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogenet Genome Res 109:373–377

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Stefanelli S, Rotondo F, Tuberosa R, Sanguineti MC (2007) Relationships among durum wheat accessions. I. Comparative analysis of SSR, AFLP, and phenotypic data. Genome 50:373–384

    Article  CAS  PubMed  Google Scholar 

  • Momotaz A, Forster JW, Yamada T (2004) Identification of cultivars and accessions of Lolium, Festuca and Festulolium hybrids through the detection of simple sequence repeat polymorphism. Plant Breed 123:370–376

    Article  CAS  Google Scholar 

  • Ouyang S, Buell CR (2004) The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32(Database issue):D360–D363

    Article  CAS  PubMed  Google Scholar 

  • Pharmawati M, Yan G, Finnegan PM (2005) Molecular variation and fingerprinting of Leucadendron cultivars (Proteaceae) by ISSR markers. Ann Bot 95:1163–1170

    Article  CAS  PubMed  Google Scholar 

  • Rognli OA, Saha MC, Bhamidimarri S, van der Heijden S (2010) Fescues. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses. Springer, New York, Dordrecht, Heidelberg, London, pp 261–292

    Chapter  Google Scholar 

  • Rojas G, Mendez MA, Munoz C, Lemus G, Hinrichsen P (2008) Identification of a minimal microsatellite marker panel for the fingerprinting of peach and nectarine cultivars. Electron J Biotechnol 11(5):1

    Article  Google Scholar 

  • Saha MC, Mian R, Zwonitzer JC, Chekhovskiy K, Hopkins AA (2005) An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor Appl Genet 110:323–336

    Article  CAS  PubMed  Google Scholar 

  • Snowdon RJ, Kohler W, Friedt W, Kohler A (1997) Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet 95:1320–1324

    Article  CAS  Google Scholar 

  • Tamura K, Yonemaru J, Hisano H, Kanamori H, King J, King IP, Tase K, Sanada Y, Komatsu T, Yamada T (2009) Development of intron-flanking EST markers for the Lolium/Festuca complex using rice genomic information. Theor Appl Genet 118:1549–1560

    Article  CAS  PubMed  Google Scholar 

  • Thomas HM, Morgan WG, Meredith MR, Humphreys MW, Thomas H, Leggett JM (1994) Identification of parental and recombined chromosomes in hybrid derivatives of Lolium multiflorum × Festuca pratensis by genomic in situ hybridization. Theor Appl Genet 88:909–913

    Article  Google Scholar 

  • Tu Y, Sun J, Ge X, Li Z (2009) Chromosome elimination, addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica. Ann Bot 103:1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. In: Proc Natl Acad Sci USA 101:9915–9920

Download references

Acknowledgments

We are grateful to the team at Diversity Arrays Technology Pty Ltd for providing DArTFest array analysis and to Marie Seifertová, MSc. and Ms. Radka Tušková for excellent technical assistance. Special thanks belong to Prof. Adam J. Lukaszewski for critical reading and valuable comments. This work was supported by the Ministry of Agriculture of the Czech Republic (grant award NAZV QH71267) and by the Czech Science Foundation (grant award 521/07/P479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kopecký.

Additional information

Communicated by T. Luebberstedt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 53.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopecký, D., Bartoš, J., Christelová, P. et al. Genomic constitution of Festuca × Lolium hybrids revealed by the DArTFest array. Theor Appl Genet 122, 355–363 (2011). https://doi.org/10.1007/s00122-010-1451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1451-1

Keywords

Navigation